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SUMMARY

The main objective of this thesis is to obtain critical insight on the role of crys-

talline incompatibilities in strain and curvature, induced in presence of line defects i.e.

dislocations and disclinations, on the energy and geometry of specific features of the

local microstructure, and on the bulk mechanical response of nanocrystalline/ultra-

fine grained materials. To that end, studies are performed at the (1) inter-atomic and

fine scale, and (2) at the mesoscale. The modelling approach is based on the field dis-

location and disclination mechanics theory of continuously representated dislocations

and disclinations. New, thermodynamically rigorous, multi-scale elastic constitutive

laws based on the couple stress theory are developed to capture the effect of strain

and curvature incompatibilities on the Cauchy and couple stresses. A new meso-

scale elasto-viscoplastic constitutive model of defect incompatibilities based on a fast

Fourier transform technique is developed. The desired scale transitioning is achieved

via novel phenomenological defect density transport equations and the newly devel-

oped elastic constitutive laws.

At the fine scale, the model is applied to study energetic interactions between

strain and curvature incompatibilities associated with grain boundaries and their in-

fluence on triple line energies. Results reveal that incompatible lattice strains have

the most significant contribution to the energy. Incompatible lattice curvatures have

negligible energetic contributions but are necessary to characterize the geometry of

grain boundaries. Finally, both incompatible lattice strains and curvatures are nec-

essary to capture the structure sensitive mechanical behavior of grain boundaries.

At the mesoscale, deformation of nanocrystalline aggregates characterized by

xxiii



residual curvatures is studied to identify the impact of the latter’s presence on the

local and bulk mechanical response of the aggregate. Relaxation of local stresses

generated from residual curvatures reproduces the effect of GB dislocation emission.

Uniaxial tensile loading of nanocrystalline microstructures containing residual cur-

vatures reveals a softening in the yield stress which could explain the breakdown in

Hall-Petch law in the nanocrystalline regime.

Next, the possibility of characterizing incompatibilities using X-ray or neutron

diffraction techniques is tested. Results reveal that only strains and their gradients

contribute to the broadening of diffraction peaks; curvatures and their gradients have

no contribution. This study leads to the development of a new multi-scale averaged

strain based Fourier technique for generating virtual diffraction peaks.
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CHAPTER I

INTRODUCTION

Nanotechnology, which involves creating useful materials, devices and systems through

manipulation of matter at the nano-meter scale, has garnered a lot of interest from

researchers in various scientific disciplines such as physics, chemistry, biology and

engineering. The idea of miniaturization for enhanced applications was originlly con-

ceived by Dr. Richard Feynman in 1950’s, three decades before its fundamental

beginnings. Today, nanotechnology is already making materials lighter, stronger, and

more durable.

Research in this field strives at developing new material systems for practical us-

age as well as improve upon existing materials that are already in use. As an example

of a promising new material system that is currently at the research stage is a piezo-

electric nano-generator that uses a ZnO nanocrystal to harvest the mechanical energy

(possibly from varied sources such as wind, wave, human movements, cars, etc.) and

convert it into electricity [474, 441]. A deeper understanding of the mechanical and

electrical behavior of these nano-sized piezoelectric generators could potentially un-

lock very useful applications such as in the biomedical industry for manufacturing

self-powered gadgets that can be used as implantable devices to monitor blood flow,

heart-rate, etc.

Nanotechnology has been successfully implemented in many diverse fields with ap-

plications at different length scales – inter-atomic (10−10−10−9m), fine (10−8−10−7m)

to meso- (10−6− 10−5m) and macro- (> 10−5m) scales (shown in figure 1.3). For ex-

ample, nano-sized quantum dot semiconductors [10, 194], micron-sized synthetic lipid

membranes [373], among many others. While the process of technology transfer in
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several of these fields largely remains at the laboratory stage, some nano-engineered

material systems have indeed found their way towards practical applications. One

such application is the use of carbon fiber reinforced composites, having carbon nan-

otubes as additives, for structural applications in aircrafts.

In the present work, the focus is on the mechanical properties of metals. Nano-

structuring of conventional coarse grained materials has several mechanical benefits

such as ultrahigh strength and hardness, increased strain rate sensitivity, superior

fatigue and wear resistance, among others [146, 225, 83, 72]. Fabrication techniques

for single phase nano-structured materials include gas-phase condensation of partic-

ulates and consolidation [146, 72, 349], electrodeposition [104], equal channel angular

pressing [363], high pressure torsion [483], etc. Furthermore, it is possible to engi-

neer nano-structured alloys through emerging techniques such as accumulated roll

bonding [347, 213] where two or more different materials, or phases of the same ma-

terial, are rolled together to form one single medium. Materials processed in such a

manner possess properties that are more enhanced than their individual nano-sized

components. For example, Cu-Nb nano-composite laminates [438, 171] formed using

accumulated roll bonding process can achieve strengths upto 2.5 GPa for multi-layer

widths of ≈ 2 - 5 nanometers, much significantly larger than the strengths of equiv-

alent individual components. In general, however, development of nano-structured

materials remains largely at the laboratory stage; a sufficient level of understanding

on their bulk mechanical response is yet to be reached. Primary reason for this is the

incomplete knowledge base on the deformation mechanisms in nano grained materi-

als; the latter’s typical microstructures are significantly different from those of their

coarse grained counterparts. In this thesis, the work done is particularly relevant to

microstructures of face centered cubic (FCC) equi-axed bulk 1) nc (nc) metals with

average grain size less than 100 nm, fabricated through gas-phase condensation of
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particulates and consolidation [146, 72, 349] or electrodeposition [104] and, 2) ultra-

fine grained (ufc) metals with average grain size between 100 nm - 1 µm, fabricated

using severe plastic deformation techniques such as equal channel angular pressing

[363], accumulated roll bonding [347, 213] or high pressure torsion [483].

A typical microstructure of FCC equi-axed nc/ufg metals consists of 1) fine grains

or crystallites with low number of dislocation defects in the bulk of the material, 2)

a large volume fraction of grain boundaries (GBs), and 3) triple junctions (TJs) or

triple lines between grains. For the sake of illustration, consider the microstructure

of a Ni disc subjected to high pressure torsion [483]. The central part of the disc

after 5 rotations and 1 GPa pressure exhibits a ufg microstructure (refer to figure

1.1(a)). The disc edges after 5 rotations and 1 GPa or 6 GPa pressure exhibit ufg

(figure 1.1(b)) or nc (figure 1.1(c)) microstructures. The hardness values reported for

the central, edge at 1 GPa, and edge at 6 GPa microstructures were ≈ 2.4 GPa, 3.1

GPa and 3.5 GPa, respectively.

1.1 Motivation

Experiments and atomistic simulations have revealed that the role of GB interfaces

on governing the plastic deformation becomes increasingly important with decreas-

ing average grain size in the nc regime [348, 391, 357, 477, 256, 208, 463, 66]. This

role of GB interfaces manifests itself through microstructural geometric and ener-

getic features at the inter-atomic, fine, and meso- scales. At the inter-atomic and

fine scales these include GB structure and misorientation, their energy and free vol-

ume, TJ geometry and stresses, defect content, net defect polarity of the domain,

etc. At the meso-scale these are grain orientation distribution, grain morphology, GB

misorientation, interface-to-volume ratio, defect distribution and associated internal

stresses, among others. Furthermore, the inter-atomic features define the meso-scale

microstructural properties and in turn the collective meso-scale behavior influences
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Figure 1.1: Microstructure of nickel discs subjected to high pressure torsion for (a)
the central part of the disk after 5 rotations at 1 GPa pressure, (b) the edge of the
disk after 5 rotations at 1 GPa and (c) the edge of the disk after 5 rotations at 6
GPa: Inset are the selective area electron diffraction patterns that were taken with
an aperture size of 1.8 µm. (Adapted from Zhilyaev and Langdon et al. [483])

the local response at the inter-atomic scale. Of particular importance to the present

work is to understand the role of lattice curvatures on the bulk mechanical response

of nc/ufg materials. Lattice curvatures typically manifest themselves at interfaces

in these materials. These interfaces, typically large angle GBs, are defects that ac-

commodate rotational jump across two grains, thus inducing an incompatibility in

the lattice curvature (or local elastic curvature) [251, 366]. These interfaces are also

sources and sinks for dislocations. As the average grain size decreases, the interface

thickness increases resulting in the accummulation of residual curvatures along with
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strains in the vicinity of GBs. Furthermore, residual curvatures are also induced in

the presence of dislocations. Interestingly, the role of curvatures on the local and bulk

mechanical response of nc/ufg materials at the inter-atomic, fine or meso scales has

never been studied.

Advances in modern experimental material characterization techniques such as

in situ high resolution transmission electron microscopy [189], 3-dimensional in situ

high energy X-ray and neutron diffraction [49], etc., are making it possible to access

the structural information stored at the inter-atomic scale and highlight the potential

significance of curvatures in defining the state of nc/ufg materials. Recent exper-

imental observations using high resolution transmission electron microscopy on nc

metals generated using severe plastic deformation techniques (Fe [291], Cu-Nb pow-

der [244], Au [254], Pd [341]) suggested that incompatible lattice curvature inducing

line defects i.e. disclinations [436], can be generated during nano-structuring of con-

ventional coarse grained materials. These defects manifest themselves in the form

of dipoles or quadrupoles in the vicinity of GBs and TJs; for example, Rösner et al.

[341] found a rotational jump along a Σ9 GB bounded by a triple and a quadruple

junction in nc Pd (shown in figure 1.2). Disclinations could have a crucial impact on

the stability of nc/ufg metals and alloys, as well as GB mediated plasticity mecha-

nisms [291, 254, 341]. These could help identify deformation related phenomena such

as possible sites for nucleation of grains, shear bands, cracks or twins. Furthermore,

in ufg materials, in which plasticity is at a transition between dislocation slip and

interface driven, disclinations may play a critical role in the formation of different

structures; for example, micro shear bands [333].

Analysing the information obtained from experimental studies in a manner that

meaningfully (i.e. thermodynamically and mechanically rigorous) interprets deforma-

tion behavior, requires models based at the inter-atomic scale, fine scale as well as

meso-scale.
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Figure 1.2: (a) View of the region along the Σ9 GB including the TJ and the quadru-
ple point. Different boundaries are indicated, (b) Rigid body rotation measured in
the form of a line profile along the Σ9 boundary and averaged over the width of the
box. Two gradients of opposite sign emerge from the TJ and the quadruple point,
respectively. The dotted line indicates the average grain misorientation. Due to the
wavy character of the Σ9 boundary the rigid body rotation occurs as a periodically
modulated signal along its length. Note the jump in rigid body rotation at ≈ 0.6 nm
(adapted from Rösner et al. [341]).

Figure 1.3: Schematic of different length scales and their associated plasticity.
(Adapted from Cherkaoui and Capolungo [72])

With respect to modelling based on disclinations at the inter-atomic or fine-scale,

there have been very limited contributions to understanding their role on the en-

ergy and geometry of local microstructure in nc materials. For static applications,

disclinations have been successfully used to represent GBs [251, 366, 139] and TJs

[44, 45, 46, 47]. GB energies [23] were computed based on closed form solutions of

disclinations in an infinite isotropic medium [97, 333]. Kinematics of disclinations was

introduced in the work of Mura [289]. Romanov [340, 335] proposed a kinetic model
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an equivalent Orowan’s law for plastic strain rate as a function of disclination density

and strength. Theoretical models based on disclinations have also been proposed

to describe several structural phenomena occurring in nc/ufg materials [333]. How-

ever, the energetic or geometric contributions of lattice curvatures were never taken

into account. Furthermore, a rigorous treatment of the dynamics of dislocations and

disclinations is lacking in these models; although, it should be noted that a significant

step in this direction was made in the contribution by Clayton et al. [77].

At the meso-scale continuum based plasticity models are prominent approaches

to model the bulk mechanical response of nc/ufg materials. These include phase field

models based on non-linear Ginzburg Landau theory of superconductivity [160, 188,

247, 464, 155, 155], macro and meso-scale crystal plasticity constitutive models based

on dislocation slip [329, 401, 182, 18, 315, 177, 27], and more recent advances include

the meso-scale strain gradient plasticity models [9, 120, 123, 121, 304, 138, 156, 4, 28,

122, 157, 153, 124, 267]. However, these models, which are typically based on a lattice

strain formulation, do not account for the contribution of curvature incompatibilities

to plasticity.

In light of the above, the main objective of this thesis is to assess the role of

lattice curvature incompatibilities, necessarily defined at different length scales, on

local enery and geometry, and the bulk mechanical response of nc/ufg materials.

1.1.1 Challenges

In order to achieve the main objective, a continuum based constitutive modelling ap-

proach is adopted. The constitutive approach requires a kinematically and thermome-

chanically rigorously framework that is capable of capturing (1) fine scale properties

such as the role of interface and TJ geometry on the energy of the microstructure,

and use this information to model (2) the collective dynamic behavior of interfaces

at the meso-scale.
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The first challenge is to adopt and/or develop such a kinematically and ther-

momechanically rigorous theoretical framework. To that end, motivation is derived

from a recently proposed dynamic field model of dislocations and disclinations by

Fressengeas et al. [134]. These defects are represented, in a continuous manner,

using their respective polar defect densities which are governed by kinematic con-

servation laws. Defect motion is described by transport equations on these defect

densities. A dynamic interplay between dislocations and disclinations occurs through

a disclination-induced source term in the transport equation for dislocations. Defect

velocities are obtained based on thermo-mechanical considerations. The model is

based on a higher order equilibrium involving couple stresses; equilibrium equations

are obtained by conservation of mass, momentum and moment of momentum. The

model accounts for incompatibilities in both elastic strains and curvatures. However,

the field disclination and dislocation mechanics model is an open framework that

needs to be closed by prescribing elastic constitutive laws that (1) account for the

contribution of incompatibilities in both strain and curvature on the static response

of the microstructure. A part of the present work is dedicated to developing these

laws based on a thermo-mechanically rigorous approach.

A crucial aspect of modelling the mechanical response of nc/ufg materials is the

passage of information between quantities defined at different length scales. From a

geometric point of view, spatial averaging of fine scale kinematic quantites represen-

tative of the defect content in the local microstructure should appropriately represent

the same kinematic quantities defined at the meso-scale. From a statics point of view,

the modelling framework should allow capturing, with sufficient detail, the structural

and energetic information on GBs at the inter-atomic and fine scales such that it

correctly reflects the textural information at the meso-scale. From a dynamics point

of view, the effect of geometric and energetic state of the local microstructure on the

motion of defects at inter-atomic, fine and meso-scales should correctly represent the
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bulk mechanical response of nc/ufg materials at the macro-scale. This requires using

multi-scale metrics that can act as conduits to pass information between different

scales. For example, a meso-incompatibility tensor introduced in the work of Clayton

et al. [77] is used to provide a statistical indication on the heterogeneity in local

(meso-scale) elastic deformations. In a recent work, Acharya and Roy [6] introduced

plastic slip rate tensor as a multi-scale metric to capture the role of statistical dislo-

cations on the fine-scale transport of dislocations. For nc/ufg materials, additional

metrics that account for the presence of disclinations may be necessary to correctly

reflect the GB geometry at the meso-scale. The present work is organized such that

at the end of the study indications will be provided on whether lattice curvatures can

be used as metrics for such transfer of information on plasticity across the scales in

nc/ufg materials.

The next challenge is to develop a meso-scale constitutive model than can use the

information transmitted through the aforementioned multi-scale metrics to model

the bulk mechanical response. To that end, motivation is derived from the work

of Acharya and Roy [6] on the phenomenological field dislocation mechanics model

which accounts for contributions of both geometrically necessary and statistically

stored dislocations. The phenomenology is extended to propose a meso-scale plastic

curvature rate that allows modelling the evolution of statistically stored disclinations.

The final challenge is to test if incompatibilities in both strain and curvature can

be characterized using experimental techniques such as X-ray or neutron diffraction.

1.2 Scope of the thesis

The current work strives to provide a rigorous continuum based multi-scale model for

dislocations and disclinations with focus at the inter-atomic, fine and the meso scales.

In order to facilitate the application of the model to nc/ufg aggregates, the develop-

ments made in this thesis are based on the small strain hypothesis. Considering the
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fact that several phenomena related to disclinations are not particularly well known

and that the proposed modelling framework is in its nascent form, a very careful

approach is followed which consists of first understanding dislocations and disclina-

tions from a continuous perspective and then tackling the challenges discussed in the

previous section. The thesis is organised in the following manner:

Chapter 2 is dedicated to reviewing the essentials of theory of dislocations and

disclinations from the point of their conception more than a century ago to present

day understanding. The motivation behind using a continuum based representation

of dislocations and disclinations is highlighted followed by a rigorous development

of the incompatible kinematic theory of stationary continuously distributed defects

adopting the latest interpretation of incompatibilities in the context of Acharya [2]

and Fressengeas et al. [134].

In chapter 3 the objective is to solve, from a multi-scale perspective, the (1)

static problem of finding stress fields that result from the presence of disclinations

and dislocations, and the (2) dynamic problem of motion of these defects under the

action of self and applied stresses. The chapter begins by developing new multi-scale

elastic constitutive laws, based on thermo-mechanical considerations, to account for

the incompatibilities induced in elastic curvatures and strains at the inter-atomic,

fine (henceforth inter-atomic and fine scales will be addressed just using fine scale,

unless at instances the distinction is deemed necessary) and meso scales as well as

the compatible lattice strains and curvatures due to external loading and equilibrium

conditions at fine and meso scales. These laws are then combined with the fine scale

kinematic field theory of dislocations and disclinations to obtain the dynamic field

dislocation and disclination mechanics model. Next, a meso-scale extension to the

fine-scale dynamic model is proposed. This ends the theoretical development of the

multi-scale constitutive model of dislocations and disclinations.

Chapter 4 focuses on assessing the role of incompatibilities in elastic strain and
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curvature on the local microstructure of nc materials. To that end the mutli-scale

model is applied to the case of <001> symmetric tilt GBs in a static case to un-

derstand the role of compatible lattice curvatures and then its application in a fully

continuous setting is highlighted to understand the contribution of incompatibilities

to GB energy and the role of elastic constitutive laws developed in this work in cap-

turing this contribution. Following this, TJs constructed from <001> symmetric tilt

GBs are studied in the discrete static case. The focus here is on understanding the

relationship between TJ geometry (i.e. dihedral angles and GB misorientations) and

energy.

Chapter 5 focuses on applying the meso-scale model to study plasticity in bulk nc

materials. The objective here is to highlight the contribution of residual curvatures on

the elasto-plastic response of these materials, with particular importance given to un-

derstanding their contribution to the local stresses. Furthermore, their contribution

to grain rotation through the generation of geometrically necessary dislocations and

disclinations during plastic curvature evolution is also highlighted; these are not ac-

counted for in strain based crystal plasticity models. The numerical implementation

of the model is based on using the state-of-the-art fast Fourier transform technique

[239]. The framework is designed such that it accounts for (a) residual curvatures,

and (b) elastic and plastic anisotropy and heterogeneity.

Chapter 6 is dedicated to test theoretically and computationally if incompati-

bilities can be characterized using X-ray and neutron diffraction. This could help

facilitate comparison of the multi-scale model with experiments, atomistics and other

continuum based plasticity models.

Finally, conclusions of this thesis are discussed in chapter 7.
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1.3 Nomenclature

This section presents the generic nomenclature used in this work. These notations are

also described at the location of their first appearance in the text. Chapter/section

specific nomenclature exist and is directly presented in text of the associated chap-

ter/section.

Tensorial quantities are represented using either a bold symbol or in their com-

ponent form with rectangular Cartesian components. These notations shall be used

interchangeably or together depending on the context. Vectors are distinguished from

other tensors by representing them with an overhead arrow. Spatial derivatives in

the component form are denoted using a comma followed by the component index.

A superimposed dot represents a material time derivative.

1.3.1 Superscripts and subscripts

e, p− Elastic and plastic components of a tensor

s, a− Symmetric and anti-symmetric components of a tensor

H,D − Hydrostatic and deviatoric components of a tensor

T − Transpose of a tensor

‖,⊥− Compatible (curl-free) and incompatible (divergence-free) components

of a tensor

�,` − Screw and edge components

1.3.2 Mathetical notations and formulae

Let φi, υij and ςijk be arbitrary first, second and third order tensors, respectively,

used to describe the .

∇~r − Second order unit dyadic
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I, δij −Kronecker delta function

X, eijk − Levi-Civita permutation symbol

υ(ij) = υs − Symmetry of a tensor over a pair of indices

υ[ij] = υa − Anti-symmetry of a tensor over a pair of indices

tr (υ) = υii − Trace of a tensor

gradυ = (∇υ)ijk = υij,k −Gradient of a tensorial quantity

divυ = (∇ · υ)i = υij,j −Divergence of a 2nd order tensor

curlυ = (∇× υ)ij = ejklυil,k − Curl of a 2nd order tensor

X (υ) = −1

2
υ : X = −1

2
eijkυij − Rotation of 2nd order tensor to obtain a vector

{φ} = −X · φ = −eijkφk − Rotation of a vector to obtain a 2nd order tensor

X (ς) = −1

2
X : ς = −1

2
emniςmnj − Rotation of a 3rd order tensor to obtain

a 3rd order tensor

{υ} = −X · υ = −eijlυlk − Rotation of a 2nd order tensor to obtain

a 3rd order tensor

1.3.3 Field variables

ρ−Material mass density

~r,~x− Spatial position

~v −Material velocity

V − Volume of a body

S − Surface of a body

~u, ui −Displacement vector

~ω, ωi − Rotation vector

η − Incompatibility tensor

U , Uij −Distortion tensor
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ε, εij − Strain tensor

ω, ωij − Rotation tensor

κa, κ[ij]k − Third order curvature tensor

κ̃, κ̃ij − Second order curvature tensor

G, Gijk − 2-distortion tensor

α, αij −Geometrically necessary dislocation density tensor

θ, θij −Geometrically necessary disclination density tensor

π, πijk −Geometrically necessary G-disclination density tensor

C − 4th order elasticity tensor

B,D − 5th order elasticity tensors

A− 6th order elasticity tensor

λ,G− Lamé constants

σ, σij − Asymmetric force stress tensor

M,Mijk − 3rd order hyper stress tensor

M̃,Mij − Second order couple stress tensor

ψ − Helmholtz free energy density

~t− Traction vector

~m−Moment vector
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CHAPTER II

INCOMPATIBLE THEORY OF LINE CRYSTAL

DEFECTS

The purpose of this chapter is to present the state of the art on the theory of stationary

line crystal defects i.e. dislocations and disclinations. The discussion begins by first

understanding, from a mathematical standpoint, the geometry (stationary equivalent

of kinematics) i.e. displacement, distortion, strain, rotation and curvature fields,

and the statics of discrete line defects. Following this, the geometric equivalence

between dislocations and disclinations is highlighted. The discussion is then directed

towards connecting line defects to crystallography with emphasis on disclinations.

From these discussions, the motivation behind adopting a continuous representation

for line crystal defects is presented. The ensuing discussion then begins by recalling

the geometry of a compatible body, i.e. a body containing no defects. This serves as

the basis for the incompatible theory of continuously distributed defects. The latter,

which was introduced in the work of Kröner [216] and deWit [94], is then presented

with the equations refined in such a manner that they encompass the most recent

developments [2, 134] in this theory. The chapter is concluded with a discussion

giving perspective on incompatibility, as presented in this work, in comparison with

other works.

2.1 Discrete line defects

The first treatise on line defects was presented by Volterra [436] in 1907, almost half a

century before the first experimental evidence on these type of defects. Volterra pos-

tulated six types of line defects in a discrete form, (a) three of these were translational
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type known as dislocations, and (b) the remaining three of rotational type known as

disclinations. The discrete defects were embedded in an infinitely long cylindrical

domain with the defect line located along its axis. The domain was assumed to be

continuous everywhere except in the immediate vicinity of the defect line where the

material is removed in order to avoid dealing with the severe distortions induced by

the presence of defect. This region was called the defect core. The defects were

characterized by a planar surface cut (shown as AA’BB’ in figure 2.1) bounded by

the defect line and extending into the cylindrical medium. The material on one side

of the surface cut was then either translated with respect to the other to obtain a

dislocation, or rotated with respect to the other to obtain a disclination.

Dislocations are characterized by the Burgers vector (~b) which is representative

of the jump induced in the displacement field (~u),

[~u] = ~b (2.1)

where [ ] is representative of the discontinuity. The dislocations whose Burgers vec-

tors are parallel to the defect line direction are identified as screw dislocations and

those who having the Burgers vector perpendicular to the line are identified as edge

dislocations.

Similarly, disclinations are characterized by a Frank’s vector (~Ω) representative of

a jump in the rotation field (~ω),

[~ω] = ~Ω (2.2)

When the Frank’s vector is parallel to the defect line, the disclination has a wedge

character and when it is perpendicular to the defect line, it has a twist character.

Figure 2.1 (adapted from Romanov and Kolesnikova [333]) pictorially describes

Volterra’s conceptualization of dislocations and disclinations. For a defect line with

dislocation character, there are two types of edge dislocations possible (see figures

2.1(c) and 2.1(d)). The first one forms when surface A’B’ is displaced in the direction
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normal to the surface AB as shown in figure 2.1(c) and the second one forms when A’B’

is displaced in the direction perpendicular to both the dislocation line and the normal

to the surface AB as shown in figure 2.1(d). Figure 2.1(b) shows a screw dislocation

formed when the surface AB is displaced in the direction of the defect line. When the

defect line has disclination character, there are two types of twist disclinations that

can be formed (see figures (2.1)(f) and (2.1)(g)). The first one shown in figure (2.1)(f)

is formed when surface A’B’ is rotated in the direction normal to the disclination line

about an axis which is located at a distance rω in the direction perpendicular to

the disclination line. The second twist disclination shown in figure (2.1)(g) is formed

when the surface A’B’ is rotated about an axis which is perpendicular to, and coplanar

with, the disclination line. A wedge disclination as shown in figure (2.1)(e) is formed

when the surface A’B’ is rotated with respect to AB about the disclination line.

Figure 2.1: Volterra’s dislocations and disclinations (adapted from Romanov and

Kolesnikova [333]). Note here that |~Ω| = ω
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From figure 2.1, for the case of dislocations it can be visualized that the jump in

displacement is constant everywhere across ABA’B’. However, in the case of discli-

nations, the displacement jump evolves depending on (a) the location of the position

vector with respect to the disclination line and (b) the Frank’s vector. deWit [97], and

Kroupa and Lejcek [223] have shown that this jump in displacement can be defined

as,

[~u] = ~Ω× (~rω − ~r) (2.3)

where ~r is the radius-vector and ~rω is the position for the rotation axis. Note that

this could be different from the defect line; an example is shown in figure 2.1(f) for a

twist disclination.

An evolving dislocation jump as shown in equation (2.3) can be most easily visu-

alized in the case of a wedge disclination where an additional wedge of material can

be inserted or removed from the elastic medium. Figure 2.2 depicts a negative wedge

disclination (represented using a ∇; a positive wedge is denoted using ∆) where a

wedge of angle ω can be imagined to be inserted into the region between faces A’B’

and AB of figure 2.1. Due to the opening created by the wedge disclination, the dis-

placement jump between faces A’B’ and AB increases with an increase in the distance

away from, and perpendicular to, the disclination line. Note that the displacement

jump remains the same along the disclination line. In the case of twist disclinations

it is more complicated to visualize the exact evolution of the displacement jump but

from figure (2.1) it can be deduced that a component of the displacement jump evolves

as a function of the distance along the disclination line direction.

A general defect line having mixed dislocation and disclination character was

proposed in the works of Nabarro [294] and deWit [95, 96, 97]. The general line

defect is characterized by both Burgers and Frank’s vectors and its presence induces
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Figure 2.2: Negative wedge disclination of strength |~Ω| = −ω inserted into the region
between the cut faces ABA’B’ of figure 2.1

a jump in both displacement and rotation fields,

[~u] = ~b+ ~Ω× (~rω − ~r) (2.4)

[~ω] = ~Ω (2.5)

Such a formulation was motivated from Weingarten’s theorem. This theorem is

based on the definition of a multiply connected body. Such a body consists of one

or more regions around which any arbitrary circuit is irreducible to a single point in

the domain, for example a domain containing voids or cracks. Weingarten’s theorem

states that: ”On following around an irreducible circuit in a multiply-connected body

satisfying the classical compatibility conditions, the rotation and displacement change

by an amount that would be possible for a rigid body” [95].

deWit [94, 95, 96, 97] proposed to develop expressions for the geometric fields

of a general line defect in a simply connected body. This body, unlike a multiply

connected body, is the one where every closed path in the domain is reducible to a

point. deWit postulated that in a simply connected medium the classical equilibrium

conditions should be respected everywhere in the domain, including the defect core

and the defect line.
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In order to obtain the geometric fields associated with line defects in an infinitely

extended simply connected continuous medium, deWit [95] rephrased the problem

as an extended formulation of the Eshelbian inclusion problem [112]. The Eshelby

problem involves solving for the stress field of an inclusion or inhomogeneity embedded

in an otherwise infinite homogeneous matrix. Consider an inclusion of volume V ′

embedded inside an infinite matrix. Let this inclusion be subjected to a permanent

deformation such that it results in a stress free or eigen strain. In reality, the inclusion

is embedded inside the matrix and cannot undergo such a stress free transformation.

Instead, both the inclusion and the matrix will deform and experience an elastic

stress field. Eshelby inclusion problem then requires finding the stress, strain and

displacement fields both in the inclusion and in the matrix. deWit argued that a

plastic strain induced in the presence of a line defect can be viewed as an eigenstrain.

Then the statement of the problem is posed without specifying the nature of the

defect [95] as: ”Given an infinitely extended homogeneous anisotropic body with the

plastic strain εp given as a prescribed function of space. To find the resulting total

displacement u throughout the body”.

The solution begins by rephrasing the problem such that it is similar to the clas-

sical elasticity problem but without the true body force. The equilibrium equation

to be solved is given as:

div σs(~r) = ∇ · σs(~r) = 0 or σsij,j(~r) = 0 (2.6)

where σs is the symmetric Cauchy stress and ~r is the position vector of a field point

in the Cartesian coordinate system. The stress is related to the symmetric elastic

strain εe via the classical Hooke’s law,

σs(~r) = C : εe(~r) or σsij(~r) = Cijklε
e
kl(~r) (2.7)

where C is the 4th order anisotropic elasticity tensor. The symmetry of Cauchy

stress and elastic strain imposes the symmetry on the indices of the elasticity tensor
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as Cijkl = Cjikl = Cijlk. Recalling that the total strain which is defined as the

symmetric part of the gradient of total displacement i.e. εkl(~r) = 1
2
(ukl(~r) + ulk(~r))

is the sum of the elastic and plastic strains, the equilibrium equation in absence of

body forces can be written as,

Cijkluk,lj(~r) = Cijklε
p
kl,j(~r) (2.8)

To integrate this equation, the Green’s tensor function Gij(~r) is used, which rep-

resents the displacement in xi direction at a field point ~r due to a point force in the

xj direction. The problem to be solved is then written as,

CijklGkn,lj(~r) + δinδ(~r) = 0 (2.9)

where δin is the Kronecker delta and δ(~r) is the three-dimensional Dirac delta func-

tion. Solving this equation gives the expression of the total displacement field in an

anisotropic elastic solid as a function of plastic strain (for details please refer to [95]),

un(~r) = −
∫
V ′

CijklGin,j(~r − ~r′)εpkl(~r
′)dV ′ (2.10)

Explicit expressions for the Green’s tensor are known for an isotropic material in

terms of the modulus of rigidity or shear modulus G and Poisson’s ratio ν,

Gin(~r) =
1

8πG

(
δinr,qq −

1

2(1− ν)
r,in

)
(2.11)

here r is the magnitude of the position vector. The elastic constants Cijkl have the

following expression in isotropic elasticity,

Cijkl = λδijδkl +G (δikδjl + δilδjk) (2.12)

where λ = 2Gν
1−2ν

and G are the Lamé constants with G being the shear modulus.

2.1.1 Statics of discrete dislocations

In the case when dislocations are present in the medium, the entire plastic distortion,

which is the sum of the anti-symmetric plastic rotation (ωp) and the symmetric
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plastic strain U p = εp + ωp, is prescribed. The double dot product of the anti-

symmetric plastic rotation tensor with the elasticity tensor is equal to zero (Cijklω
p
kl =

0). Therefore the expression for the total displacement can be written as,

un(r) = −
∫
V ′

CijklGin,j(r − r′)Up
kl(r
′)dV ′ (2.13)

In the presence of a continuous distribution of dislocations, this expression is the

same as that obtained by Mura [288]. The plastic distortion of a discrete dislocation

can be defined as a function of the Burgers vector and an arbitrarily shaped defect

surface S with normal ~n [95],

Up
kl = −δk(S)bl (2.14)

where δk(S) attains the value 1 on the surface S and 0 everywhere else. deWit [95]

proposed a general 3-dimensional defect surface which was a generalized form of the

Volterra surface cut. The defect surface is allowed to take any arbitrary shape as long

as it is bounded by the defect line. An arbitrary shape is allowed because it does not

affect the continuity of elastic distortion and strain fields. However, the displacement

fields are multi-valued everywhere on this surface. Figure 2.3 shows an infinitely long

curved dislocation line l with Burgers vector b bounded by an arbitrary curved defect

surface S and traversing an arbitrary curved Burgers surface σ which is bounded by

the Burgers circuit in the sense shown by λ. The displacement is discontinuous at the

point of intersection of S and λ. The discontinuity is in the direction of the Burgers

vector.

The final expression for the displacement field is obtained by substituting (2.14)

in (2.13),

un(r) = −
∫
S′

CijklGin,j(r − r′)bldS ′k (2.15)

Equation (2.15) represents the displacement field of a curved dislocation line of
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Figure 2.3: A curved dislocation line l with a general Burgers vector b in an infinite
continuous medium, bounded by an arbitrarily shaped defect surface S and encircled
by an arbitrarily shaped Burgers circuit λ, traverses the Burgers surface σ at an
arbitrary angle. The grey and black dotted arrows indicate the possible extensions
of S and l, respectively. The line direction and the sense of λ make the crossings
between l and σ negative according to the right-hand rule.

finite length in an infinitely extended anisotropic elastic medium. Taking the deriva-

tives of this field gives the distortion, strain, rotation and curvature fields.

In this work, we are interested in developing the closed form solutions for an

infinitely long straight dislocation line in an infinitely extended isotropic medium.

In this case, the defect surface becomes a planar semi-infinite surface cut. This is

in spirit with the planar surface cut described in the hollow cylindrical domain by

Volterra in figure 2.1 except that in deWit’s work the surface cut enters into the

defect core and is bounded by the defect line. In the present work, similar to the

work of deWit [95], the dislocation line is placed along the z axis and bounds the
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planar surface cut which lies in the xz plane such that its normal is in the negative

y direction, and extends to infinity along the positive and negative z axis and the

negative x axis as shown in figure 2.4(a). Since for a dislocation the jump in the

displacement field remains constant everywhere on the defect surface, considering the

geometric fields at the z = 0 plane is representative of all planes belonging to the

same family. In this case the surface cut is represented by a semi-infinite line in

the xy plane. Generally, the surface cut is allowed to attain any arbitrary rotation.

However, giving a particular orientation to the surface cut is necessary to define the

displacement field. In the present work, it is chosen to be along the negative x axis

as illustrated in figure 2.4(b). This is in spirit with the work of deWit [97]. The angle

φ is defined with respect to the chosen orientation of the surface cut and ranges from

(−π, π) with a jump of 2π across the −x axis. With such a definition, the functional

relationship of φ is given as φ(x, y) = tan−1(y/x) + πH(−x) [H(y)−H(−y)], where

H is the Heaviside step function.

The closed-form solution of the compatible displacement field in two-dimensional

isotropic case is then given as follows,

ux = bx

[
φ

2π
+

xy

4π(1− ν)ρ2

]
+

by
4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
(2.15a)

uy = − bx
4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
+ by

[
φ

2π
− xy

4π(1− ν)ρ2

]
(2.15b)

uz =
bzφ

2π
(2.15c)

where bi(i = x, y, z) is the Burgers vector component in direction i, ν is the Poisson’s

ratio, and ρ =
√
x2 + y2 is the distance from the defect line to an arbitrary point in

the x− y plane.

deWit [95] labels the displacements in equation (2.16) as the total displacements.

The argument being that within the framework of solving an Eshelby type problem

using the Green’s function method, such is the necessary outcome of the solution.

On the other hand, elsewhere in the literature these multi-valued displacements are
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Figure 2.4: Semi-infinite defect surface along the −x axis and bounded by the in-
finitely long straight defect along the z-axis in (a) 3-dimensions. Blue arrows indicate
the directions of infinite extension of S and the red dots indicate the critical points
of intersection of the surface with the coordinate axes. (b) z = 0 plane showing the
defect surface represented as a semi-infinite line bounded at the origin and extending
along the −x axis. φ defines the angular position of the point ρ in the xy plane,
φ ∈ [−π, π]

referred to as the elastic displacements, for example in the work of Nabarro [294]. In

this work we follow the latter nomenclature and identify the displacements in equation

(2.16) and the preceding equations as elastic (~ue). The reasoning is based on the

continuity of the material which requires that the total displacements are well-defined

everywhere in the domain. Due to the multi-valued nature of the displacements in

equation (2.16), these cannot be deemed as total displacements. However, it is to be

noted that deWit’s work differs only in terminology; equations (2.16) give the same

solution as those available elsewhere in the literature [436, 294, 15].

An illustration of these displacement fields for pure edge and pure screw disloca-

tions are shown in the case of an infinitely extended continuous medium in figures

2.5 and 2.6, respectively. The Burgers vector is taken as ~b = (001) for the screw

dislocation and ~b = (100) for the edge dislocation with magnitudes equal to 3.615 Å.

The Poisson’s ratio is taken as ν = 0.34. Note the jump induced in the displacement
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field across the surface cut. The x-component of the displacement (ux) goes from

−|~b|/2 to |~b|/2 across this surface cut for an edge dislocation. In the case of a screw

dislocation, the z-component goes from −|~b|/2 to |~b|/2.

(a) uex (m) (b) uey (m)

Figure 2.5: Non-zero components of elastic displacement fields (in m) (a) uex and (b)
uey of an infinitely long straight single edge dislocation along the z-axis in an infinite

continuous medium with ~b = (100). The magnitude of the Burgers vector is taken
to be 3.615 Å and the Poisson’s ratio is ν = 0.34.

The elastic distortion Ue is obtained by taking the gradient of the elastic displace-

ment U e
ij = uei,j. Recall that the elastic displacement field is a discontinuous function.

Taking its gradient requires neglecting the discontinuous part. This operation results

into a smooth continuous elastic distortion field. This field is termed as compatible.

The component of elastic distortion which cannot be accessed due to the multi-valued

nature of the elastic displacement field is called the incompatible elastic distortion.

The implications of this shall be discussed in the forthcoming section. For present

purposes, we focus the discussion on compatible elastic distortions.

A remark on the notations employed in defining the compatible elastic distortion:

note that this is in spirit with the nomenclature used in this work and differs from
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Figure 2.6: Non-zero component of the elastic displacement field uez (in m) of an in-
finitely long straight single screw dislocation along the z-axis in an infinite continuous
medium with ~b = (001). The magnitude of the Burgers vector is taken to be 3.615
Å and the Poisson’s ratio is ν = 0.34

that used in the work of deWit [97]. Taking this under consideration, the compatible

elastic distortion is defined as,

U e‖
xx = − bx

4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
+

by
4π(1− ν)

[
(1− 2ν)

x

ρ2
− 2

xy2

ρ4

]
(2.16)

U e‖
yy = − bx

4π(1− ν)

[
(1− 2ν)

y

ρ2
− 2

x2y

ρ4

]
+

by
4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
(2.16a)

U e‖
zz = 0 (2.16b)

U e‖
xy =

bx
4π(1− ν)

[
(3− 2ν)

x

ρ2
− 2

xy2

ρ4

]
+

by
4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
(2.16c)

U e‖
yx = − bx

4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
− by

4π(1− ν)

[
(3− 2ν)

y

ρ2
− 2

x2y

ρ4

]
(2.16d)

U e‖
yz = 0 (2.16e)

U e‖
zy =

bzx

2πρ2
(2.16f)

U e‖
xz = 0 (2.16g)

U e‖
zx = − bzy

2πρ2
(2.16h)

where the superscript ’‖’ denotes the compatible component. Note that it is possible
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to integrate equations (2.16) to obtain an expression of a vectorial field, say ’~v’. How-

ever, ~v will be a continuous function and would not correspond to the discontinuous

elastic displacement field in equations (2.16). Furthermore, integrating the compati-

ble elastic distortions would lead to a compatible elastic displacement field which is

unique only up to a constant vector field.

The symmetric part of the compatible elastic distortion is the compatible elastic

strain εe‖ whose components are given as,

εe‖xx = − bx
4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
+

by
4π(1− ν)

[
(1− 2ν)

x

ρ2
− 2

xy2

ρ4

]
(2.17)

εe‖yy = − bx
4π(1− ν)

[
(1− 2ν)

y

ρ2
− 2

x2y

ρ4

]
+

by
4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
(2.17a)

εe‖zz = 0 (2.17b)

εe‖xy = εe‖yx =
bx

4π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
− by

4π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
(2.17c)

εe‖yz = εe‖zy =
bzx

4πρ2
(2.17d)

εe‖xz = εe‖zx = − bzy

4πρ2
(2.17e)

The expressions for compatible elastic distortions and strains highlight their sin-

gular nature at the line of the defect. Furthermore, at distances less than the Burgers

vector magnitude (usually taken as the radius of the core of the dislocation) these

expressions are not valid.

The well known expressions for Cauchy stresses are then obtained by substituting

equations (2.17) and (2.12) in the Hooke’s law (2.7),

σe‖xx = − Gbx
2π(1− ν)

[
y

ρ2
+ 2

x2y

ρ4

]
+

Gby
2π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
(2.18)

σe‖yy = − Gbx
2π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
+

Gby
2π(1− ν)

[
x

ρ2
+ 2

xy2

ρ4

]
(2.18a)

σe‖zz = − Gν

2π(1− ν)

[
2
bxy

ρ2
− 2

byx

ρ2

]
(2.18b)

σe‖xy = σe‖yx =
Gbx

2π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
− Gby

2π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
(2.18c)

σe‖yz = σe‖zy =
Gbzx

2πρ2
(2.18d)
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(a) ε
e‖
xx (b) ε

e‖
xy

(c) ε
e‖
yy

Figure 2.7: Non-zero components of compatible elastic strain fields (a) ε
e‖
xx, (b) ε

e‖
xy

and (c) ε
e‖
yy of an infinitely long straight single edge dislocation along the z-axis in an

infinite continuous medium with ~b = (100). The magnitude of the Burgers vector is
taken to be 3.615 Å and the Poisson’s ratio is ν = 0.34.

σe‖xz = σe‖zx = −Gbzy
2πρ2

(2.18e)

Upon substituting the Cauchy stress into the equilibrium equation (2.6), it is

found that σij,j = 0 is respected everywhere in the domain, including the defect line
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(a) ε
e‖
zx (b) ε

e‖
zy

Figure 2.8: Non-zero components of compatible elastic strain fields (a) ε
e‖
zx and (b)

ε
e‖
zy of an infinitely long straight single screw dislocation along the z-axis in an infinite

continuous matrix with ~b = (001). The magnitude of the Burgers vector is taken to
be 3.615 Å and the Poisson’s ratio is ν = 0.34.

where equation (2.18) is singular.

The elastic rotations for a dislocation are also compatible. This can be deduced

from the fact that dislocations are translational type of defects. The compatible

elastic rotation are given as follows,

ωe‖x =
bzx

4πρ2
(2.19)

ωe‖y =
bzy

4πρ2
(2.19a)

ωe‖z = − bxx

2πρ2
− byy

2πρ2
(2.19b)

The compatible elastic curvatures κe‖, which are defined as the gradients of the

elastic rotation, are then derived as,

κe‖xx =
bz
4π

[
1

ρ2
− 2x2

ρ4

]
(2.20)

κe‖xy = − bzxy
2πρ4

(2.20a)

κe‖xz = 0 (2.20b)
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κe‖yx = − bzxy
2πρ4

(2.20c)

κe‖yy =
bz
4π

[
1

ρ2
− 2y2

ρ4

]
(2.20d)

κe‖yz = 0 (2.20e)

κe‖zx = − bx
2π

[
1

ρ2
− 2x2

ρ4

]
+
byxy

πρ4
(2.20f)

κe‖zy =
bxxy

πρ4
− by

2π

[
1

ρ2
− 2y2

ρ4

]
(2.20g)

κe‖zz = 0 (2.20h)

Note that κ
e‖
yx = κ

e‖
xy for an infinitely long straight dislocation. In general, the

curvature tensor is asymmetric. This shall be evidenced in the case of disclinations.

(a) κ
e‖
zx (m−1) (b) κ

e‖
zy (m−1)

Figure 2.9: Non-zero compatible elastic curvature fields (in m−1) (a) κ
e‖
zx and (b)

κ
e‖
zy of an infinitely long straight single edge dislocation along the z-axis in an infinite

continuous medium with ~b = (100). The magnitude of the Burgers vector is taken
to be 3.615Ao and the Poisson’s ratio is ν = 0.34.

2.1.2 Statics of discrete disclinations

In the same work as dislocations, deWit [95, 96, 97] also developed the statics of

discrete disclinations. Recall from equation (2.3) that the jump in elastic displacement
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(a) κ
e‖
xx (m−1) (b) κ

e‖
xy (m−1)

(c) κ
e‖
xy (m−1) (d) κ

e‖
yy (m−1)

Figure 2.10: Non-zero compatible elastic curvature fields (in m−1) (a) κ
e‖
xx, (a) κ

e‖
xy,

(a) κ
e‖
yx and (d) κyy of an infinitely long straight single screw dislocation along the z-

axis in an infinite continuous medium with~b = (001). The magnitude of the Burgers
vector is taken to be 3.615Ao and the Poisson’s ratio is ν = 0.34.

in the presence of a disclination is given as [ul] = elqrΩq(xr−xo
r). The plastic distortion

of a discrete disclination is then defined as a function of the Frank’s vector [290, 95],

Up
kl = −δk(S)elqrΩq(xr − xo

r) (2.21)
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Then the expression for the elastic displacement field from equation (2.13) can be

written as,

un(r) =

∫
V ′

CijklGin,j(r − r′)δk(S)elqrΩq(xr − xo
r)(r

′)dV ′ (2.22)

This elastic displacement solely arises from the rotational discontinuity induced

by the disclination. The defect surface is defined in the same manner as in the case

of a dislocation. Figure 2.11 shows a curved disclination line with Frank’s vector Ω.

It is bounded by the arbitrarily shaped surface S and traverses an arbitrarily shaped

Frank’s surface σ that terminates into a circuit λ. The Frank’s circuit has a positive

sense according to the right hand rule. The rotation axis is displaced by a vector rω

from the point of intersection of l and σ. This implies that a disclination line has a

de-localized defect core i.e. for a non-null rω, the core may not be centered on the

disclination line; in some cases it is also possible that disclination line may not lie

within the core.

The geometric fields for an infinitely long straight discrete disclination line are

derived in a manner similar to the dislocation case. Let the disclination with Frank’s

vector ~Ω lie along the z-axis in 3D Cartesian space. It is bounded by a planar surface

cut similar to the case of dislocations shown in figure 2.4. The elastic displacements

are then given as,

uex =
Ωxz

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
+ Ωyz

[
φ

2π
+

xy

4π(1− ν)ρ2

]
−Ωz

[
yφ

2π
− (1− 2ν)x(ln ρ− 1)

4π(1− ν)

]
(2.23)

uey = −Ωxz

[
φ

2π
− xy

4π(1− ν)ρ2

]
− Ωyz

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
+Ωz

[
xφ

2π
+

(1− 2ν)y(ln ρ− 1)

4π(1− ν)

]
(2.23a)

uez = Ωx

[
yφ

2π
− (1− 2ν)x(ln ρ− 1)

4π(1− ν)

]
− Ωy

[
xφ

2π
+

(1− 2ν)y(ln ρ− 1)

4π(1− ν)

]
(2.23b)

Note that even in the case of disclinations the displacements are always a function

of the surface cut. Figure 2.12 and 2.13 illustrate the non-zero displacement vector
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Figure 2.11: A curved disclination line l with a Frank’s vector Ω in an infinite
continuous medium, bounded by an arbitrarily shaped defect surface S and encircled
by an arbitrarily shaped Frank’s circuit λ, traverses the Frank’s surface σ at an
arbitrary angle. The grey and black dotted arrows indicate the possible extensions
of S and l, respectively. rω is the vector denoting the position of the rotation axis.
The line direction and the sense of λ make the crossings between l and σ negative
according to the right-hand rule.

components on the z = 0 plane in the presence of an infinitely long straight wedge

~Ω = (001) and twist ~Ω = (100) disclination line respectively, lying along the z-axis

in an infinite continuous medium (Poisson’s ratio ν = 0.34). The strength of the

disclination is taken as |~Ω| = 3o which is in the same order as those obtained for

disclination dipoles from experimental measurements [333].

As shown in figure 2.12(b) for the case of a wedge disclination, the jump in dis-

placements across the surface cut increases along the direction perpendicular to the

disclination line and the normal to the surface cut. This result is in accordance with
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(a) uex (m) (b) uey (m)

Figure 2.12: Non-zero components of elastic displacement fields (in m) (a) uex and
(b) uey at z = 0 of an infinitely long straight single wedge disclination along the z-axis
in an infinite continuous medium, having Poisson’s ratio ν = 0.34, with Frank’s vector
magnitude |~Ω| = 3o along the direction (001).

(a) uez (m)

Figure 2.13: Non-zero component of displacement fields (in m) uz at z = 0 an in-
finitely long straight single twist disclination along the z-axis in an infinite continuous
medium, having Poisson’s ratio ν = 0.34, with Frank’s vector magnitude |~Ω| = 3o

along the direction (100).
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the discussion earlier in this chapter on the figure 2.2. Note from equations (2.23) that

the displacement for a wedge disclination is independent of the direction z. However,

for twist disclinations there is a z component that makes the displacements vary along

the direction of the disclination line, also in accordance with the discussion earlier in

this section.

The elastic distortion U e
ij has an antisymmetric component related to the elastic

rotation field as U e
[ij] = −eijkωek, where [ ] on the indices represents the anti-symmetric

component. The elastic distortion is therefore dependent on the surface cut orienta-

tion and is not compatible. This is reflected from the presence of φ, H and δ functions

in the following expression of the elastic distortion field,

U e
xx = − Ωxz

4π(1− ν)

[
(1− 2ν)

x

ρ2
− 2

xy2

ρ4

]
− Ωyz

4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
+

Ωz

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
(2.24)

U e
xy = − Ωxz

4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
+

Ωyz

4π(1− ν)

[
(3− 2ν)

x

ρ2
− 2

xy2

ρ4

]
+ΩyzH(−x)δ(y)− Ωz

[
φ

2π
+

xy

4π(1− ν)ρ2

]
(2.24a)

U e
xz = − Ωx

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
+ Ωy

[
φ

2π
+

xy

4π(1− ν)ρ2

]
(2.24b)

U e
yx =

Ωxz

4π(1− ν)

[
(3− 2ν)

y

ρ2
− 2

x2y

ρ4

]
− Ωyz

4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
+Ωz

[
φ

2π
− xy

4π(1− ν)ρ2

]
(2.24c)

U e
yy = − Ωxz

4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
− ΩxzH(−x)δ(y)

− Ωyz

4π(1− ν)

[
(1− 2ν)

y

ρ2
− 2

x2y

ρ4

]
+

Ωz

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
+ ΩzxH(−x)δ(y) (2.24d)

U e
yz = Ωx

[
φ

2π
− xy

4π(1− ν)ρ2

]
− Ωy

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
(2.24e)

U e
zx = − Ωx

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
− Ωy

[
φ

2π
− xy

4π(1− ν)ρ2

]
(2.24f)

U e
zy = Ωx

[
φ

2π
+

xy

4π(1− ν)ρ2

]
− Ωy

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
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−ΩyxH(−x)δ(y) (2.24g)

U e
zz = 0 (2.24h)

Eliminating the discontinuous anti-symmetric component of the elastic distortion

gives a smooth compatible elastic strain field,

εe‖xx = − Ωxz

4π(1− ν)

[
(1− 2ν)

x

ρ2
− 2

xy2

ρ4

]
− Ωyz

4π(1− ν)

[
(1− 2ν)

y

ρ2
+ 2

x2y

ρ4

]
+

Ωz

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
(2.25)

εe‖yy = − Ωxz

4π(1− ν)

[
(1− 2ν)

x

ρ2
+ 2

xy2

ρ4

]
− ΩxzH(−x)δ(y)

− Ωyz

4π(1− ν)

[
(1− 2ν)

y

ρ2
− 2

x2y

ρ4

]
+

Ωz

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
+ ΩzxH(−x)δ(y) (2.25a)

εe‖zz = 0 (2.25b)

εe‖xy =
Ωxz

4π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
+

Ωyz

4π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
− Ωzxy

4π(1− ν)ρ2
(2.25c)

εe‖xz = − Ωx

4π(1− ν)

[
(1− 2ν) ln ρ+

y2

ρ2

]
+

Ωyxy

4π(1− ν)ρ2
(2.25d)

εe‖yz =
Ωxxy

4π(1− ν)ρ2
− Ωy

4π(1− ν)

[
(1− 2ν) ln ρ+

x2

ρ2

]
(2.25e)

Similar to elastic displacements for twist disclinations, the elastic strain evolves as

a function of the position along the disclination line. Equations (2.25) confirm that the

strains do not contain φ, H or δ functions and are therefore well defined everywhere

in the domain except the dislocation line where they are singular. However, these

expressions also reveal a logarithmic dependence of elastic strain on the distance

from the defect line highlighting their diverging nature in the presence of a single

disclination. This is illustrated in figures 2.14 and 2.15 for the same wedge and twist

disclination cases used to demonstrate the displacements and curvatures.

The Cauchy stresses induced in the presence of a single disclination are obtained

by substituting equations (2.25) and (2.12) in the Hooke’s law (2.7),

σe‖xx = − Gbx
2π(1− ν)

[
y

ρ2
+ 2

x2y

ρ4

]
+

Gby
2π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
(2.26)

37



(a) ε
e‖
xx (b) ε

e‖
xy

(c) ε
e‖
yy

Figure 2.14: Non-zero components of elastic strain fields (a) ε
e‖
xx, (b) ε

e‖
xy and (c) ε

e‖
yy

of an infinitely long straight single wedge disclination along the z-axis in an infinite
continuous medium, having Poisson’s ratio ν = 0.34, with Frank’s vector magnitude
|~Ω| = 3o along the direction (001).

σe‖yy = − Gbx
2π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
+

Gby
2π(1− ν)

[
x

ρ2
+ 2

xy2

ρ4

]
(2.26a)

σe‖zz = − Gν

2π(1− ν)

[
2
bxy

ρ2
− 2

byx

ρ2

]
(2.26b)

σe‖xy = σe‖yx =
Gbx

2π(1− ν)

[
x

ρ2
− 2

xy2

ρ4

]
− Gby

2π(1− ν)

[
y

ρ2
− 2

x2y

ρ4

]
(2.26c)
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(a) ε
e‖
xz (b) ε

e‖
yz

Figure 2.15: Non-zero components of elastic strain fields (a) ε
e‖
xz and (b) ε

e‖
yz of an

infinitely long straight single twist disclination along the z-axis in an infinite continu-
ous medium, having Poisson’s ratio ν = 0.34, with Frank’s vector magnitude |~Ω| = 3o

along the direction (100).

σe‖yz = σe‖zy =
Gbzx

2πρ2
(2.26d)

σe‖xz = σe‖zx = −Gbzy
2πρ2

(2.26e)

Next, the discontinuous elastic rotation fields are given as,

ωex =
Ωxφ

2π
− 1

2
ΩyxH(−x)δ(y) (2.27)

ωey =
Ωyφ

2π
(2.27a)

ωez = −Ωxyz

2πρ2
− Ωyxz

2πρ2
− 1

2
ΩyH(−x)δ(y) +

Ωzφ

2π
(2.27b)

where φ is defined the same way as shown in figure 2.4. Notice that, contrary to the

case of a dislocation, these elastic rotations are no longer compatible. A closer look

at equations (2.27) reveals that the rotation field of a twist disclination depends on

the position in the direction of the disclination line. This implies that the rotation

jump across the defect surface is evolving as a function of the position along the twist

disclination line. This is counter-intuitive because one would expect the rotational
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jump to be constant along the disclination line by deriving analogy from the case of

a dislocation having a constant displacement jump.

Taking the gradient of the elastic rotations in equation (2.27) gives the compatible

elastic curvature field as follows,

κe‖xx = − Ωxy

2πρ2
(2.28)

κe‖xy = − Ωxx

2πρ2
(2.28a)

κe‖xz = 0 (2.28b)

κe‖yx = − Ωyy

2πρ2
(2.28c)

κe‖yy =
Ωyx

2πρ2
(2.28d)

κe‖yz = 0 (2.28e)

κe‖zx = −Ωxxyz

πρ4
− Ωyz

2π

[
1

ρ2
− 2

x2

ρ4
+ πδ(ρ)

]
− Ωzy

2πρ2
(2.28f)

κe‖zy =
Ωxz

2π

[
1

ρ2
− 2

y2

ρ4
+ πδ(ρ)

]
+

Ωyxyz

πρ4
+

Ωzx

2πρ2
(2.28g)

κe‖zz =
Ωxy

2πρ2
− Ωyx

2πρ2
(2.28h)

Figures 2.16 and 2.17 show the non-vanishing components of the elastic curvature

fields for a pure wedge and a pure twist disclination, respectively, on the z = 0 plane.

The disclinations have a strength of |~Ω| = 3o and the medium has a Poisson’s ratio

of ν = 0.34.

2.2 Discussion

2.2.1 Geometric equivalence between disclinations and dislocations

Geometric equivalence between disclinations and dislocations was first shown in the

work of Kröner [215]. Following an argument made in the work of Peach and Koehler

[313], Kröner derived the displacement field of a dislocation using a procedure anal-

ogous to the line integral approach used to derive the Biot-Savart law in electro-

magnetism. The resulting strain is a function of the difference between rotational
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(a) κ
e‖
zx (m−1) (b) κ

e‖
zy (m−1)

Figure 2.16: Non-zero components of compatible elastic curvature fields (in m−1)

(a) κ
e‖
zx and (b) κ

e‖
zy at z = 0 of an infinitely long straight single wedge disclination

along the z-axis in an infinite continuous medium (Poisson’s ratio of ν = 0.34) with

Frank’s vector magnitude |~Ω| = 3o along the direction (001).

components of two defect lines separated by a finite distance. This rotational com-

ponent is identified as the disclination dipole and the distance separating them is the

disclination dipole arm length. An example is shown in figure 2.18 where a wedge

disclination dipole of strength |~Ω| = ±ω having a very small dipole arm ~t is repre-

sented using an equivalent dislocation with Burgers vector,

~b = ~t× ~Ω (2.29)

deWit [97] showed that both the compatible elastic strain and the compatible

elastic curvature fields induced in the presence of a disclination dipole and its equiv-

alent dislocation are the same. For the sake of illustration consider the following

example of a wedge disclination dipole of strength |~Ω| = ±36.87o and arm length

|~t| = 0.28202 nm. Figures 2.19 and 2.20 illustrate the εxx component of elastic strain

and κzx component of the curvature fields, respectively, of the wedge disclination

dipole and its equivalent edge dislocation, computed using equations (2.17), (2.20),
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(a) κ
e‖
xx (m−1) (b) κ

e‖
xy (m−1)

(c) κ
e‖
zz (m−1)

Figure 2.17: Non-zero component of compatible elastic curvature fields (in m−1) (a)

κ
e‖
xx, (b) κ

e‖
xy, and (c) κ

e‖
zz at z = 0 an infinitely long straight single twist disclination

along the z-axis in an infinite Cu matrix (Poisson’s ratio ν = 0.34) with Frank’s vector

magnitude |~Ω| = 3o along the direction (100).

(2.28) and (2.25); the equivalent Burgers vector thus obtained has a magnitude of

|~b| = 0.18148 nm. The two disclinations are placed equidistantly from the origin and

are aligned along the y-axis such that the equivalent dislocation lies at the origin and

its Burgers vector is along the positive x-axis.
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Figure 2.18: A wedge disclination dipole with line direction ~ξ, arm strength |~Ω| and

arm length |~t| and its equivalent dislocation with line direction ~ξ and Burgers vector
~b

(a) ε
e‖
xx (disclination dipole) (b) ε

e‖
xx (dislocation)

Figure 2.19: Comparison of compatible elastic strain fields ε
e‖
xx for (a) a wedge discli-

nation dipole of strength |~Ω| = 36.87o and arm length |~t| = 0.28202 nm and (b) for

an edge dislocation of equivalent Burgers vector magnitude |~b| = 0.18148 nm.

Figures 2.19 and 2.20 show the out of core elastic strain and curvature contri-

butions for the wedge disclination dipole and its equivalent edge dislocation. Their

closeness is asserted by the very low (less than 0.0001 %) averaged relative error. Note

that the elastic strain fields, which are diverging for the case of single disclinations,

are diminishing with distance for the case of a disclination dipole. This is due to the

partial screening of the elastic strain fields that leads to their decay (at a rate faster

43



(a) κ
e‖
zx (disclination dipole) (b) κ

e‖
zx (dislocation)

Figure 2.20: Comparison of compatible elastic curvature fields κ
e‖
zx and κ

e‖
zy for (a), (c)

a wedge disclination dipole of strength |~Ω| = 36.87o and arm length |~t| = 0.28202 nm

and (b), (d) for an edge dislocation of equivalent Burgers vector magnitude |~b| =
0.18148 nm.

than 1/r) at large distances.

Romanov and co-workers [339, 333] elaborated the discussion on the dislocation-

disclination equivalence by conceiving several types of disclination dipoles based on

three degrees of freedom (DOF) in the form of (i) position of the rotation axis, (ii) po-

sition of the disclination line, and (iii) the magnitude and direction of Frank’s vector.

One example is a twist disclination dipole that can be formed by a single disclina-

tion line and two rotation axes as shown in figure 2.21(a). In such a configuration,

the disclination lines coincide and the rotation axes with Frank’s vector magnitudes

|~Ω| = −ω and |~Ω| = ω are separated by a distance t such that it forms an equivalent

edge dislocation with Burgers vector as shown in equation (2.29).

If the disclination dipole arm length is much larger than the interatomic spacing

then the Burgers vector may have a magnitude quite large for a single dislocation to

exist in a stable form in a crystal lattice. In such a case, the dipole can be represented

by an equivalent dislocation wall. This was remarked by Li [250, 251] who proved that

the strain and stress fields of a wedge disclination dipole with a large dipole arm length
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is equal to that of an equivalent edge dislocation wall. The wall consists of dislocations

having equal Burgers vectors and the summation of these Burgers vectors gives the

equivalent Burgers vector obtained from equation (2.29). Such an equivalent edge

dislocation wall is shown in figure 2.21(b). Another disclination dipole configuration

is a two-line one-rotation-axis dipole as shown in figure 2.21(c). It demonstrates the

properties of a dislocation quadrupole [333].

Figure 2.21: Disclination dipoles and their dislocation analogues (adapted from
Romanov and Kolesnikova [333]), (a) single-line, two-rotation-axes dipole of twist
disclinations, (b) two-lines, two-axes wedge disclination dipole and (c) one-axis wedge
disclination dipole

A disclination can also be represented using a superposition of dislocations, and

vice versa. This can be most simply illustrated for a wedge disclination. Reconsider

the case of a negative wedge disclination shown in figure 2.2(a). This disclination has

one rotation axis that is aligned along the disclination line. Such a disclination can

be formed at the tip of an additional wedge of a material inserted into a continuous

domain (see figure 2.22(b)). This wedge can be imagined in the form of a set of half-

planes of atoms inserted into the material and arranged as shown in figure 2.22(c).
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These half-planes induce a semi-infinite wall of dislocations which terminates at the

tip of the wedge (see figure 2.22(d)) i.e. at the original disclination line.

Figure 2.22: Relation between wedge disclinations and terminated edge dislocation
walls: (a) negative wedge disclination with strength −ω, (b) wedge of angle ω which
has to be inserted to create the disclination, (c) a set of half-planes representing
the wedge, and (d) terminated wall of equidistant edge dislocations (adopted from
Romanov and Kolesnikova [333])

Romanov and coworkers [339, 333, 316] also discuss disclination loop configu-

rations. A twist disclination loop, which is formed from a closed disclination line

encircling a planar surface with the Frank’s vector perpendicular to this surface, can

be represented using a set of screw dislocations as shown in figure 2.23. A disclination

loop can also be formed when the Frank’s vector is contained in the planar surface

encircled by the disclination line. In the literature, it is usually referred to as a wedge

disclination loop [333]. Although, strictly speaking, such a configuration has a mixed

wedge/twist character. A square type of a wedge disclination loop [316] is shown in

figure 2.24. The rectangular shape is interesting because such a disclination loop can

be easily transformed into other disclination defects such as an angular disclination,

a disclination dipole, a U-shaped defect or a linear disclination.

In general, the compatible elastic strain and curvature fields are the same for all the
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Figure 2.23: (a) A twist disclination loop and (b) an equivalent representation using
screw discloations (adapted from Li [251])

Figure 2.24: Rectangular pure wedge disclination loop (adapted from Pertsev et al.
[316])

aforementioned disclination dipole/equivalent dislocation configurations. However,

these are defined outside the core of the defects (recall the closed form solutions of

deWit [97]), the same may not be true within the defect cores. Closed form expressions

for elastic fields within the defect core exist but only in the case of discrete dislocations

[314]. To the author’s knowledge no such expressions for discrete disclinations are

available.
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2.2.2 Connecting disclinations to crystallography: State of the art

Volterra’s treatise [436] gave a mathematical understanding on the geometry of line

defects and provided the basis to connect them to crystallography. Such a connection

was first established for dislocation in the pioneering works of Taylor and Elam [398,

399], Schmid [354], Orowan [308], Polanyi [318], Taylor [400, 397], Burgers [54, 55],

Read [324], among others. Orowan [308], Polanyi [318], Taylor [400] and Burgers

[54] considered the dislocation as a discrete line singularity in a crystal lattice. They

proved that for dislocations to exist in a material, the Burgers vector must be a lattice

vector corresponding to the translational symmetry of the material. The presence of

a dislocation results in a discontinuity (jump) in the lattice (elastic) displacement

field. This discontinuity has the magnitude and direction of the Burgers vector. In

order to maintain the continuity of the material, lattice strains are generated. These

in turn give rise to internal stresses in order to satisfy equilibrium conditions. These

pioneering works led to the development of the theory of dislocations [93, 95, 97,

306, 216, 38, 40, 39, 217, 457] which along with early experimental observations of

dislocation activity during plastic deformation [133, 432, 129, 85, 184, 270, 185, 312,

172, 435, 191, 40, 143] generated significant interest in understanding the plasticity

of materials from a dislocation perspective.

The present work, focuses on the connection of disclinations to crystallography.

For a detailed understanding on the theory of crystal dislocations and plasticity due

to dislocation motion, the reader is referred to the works of Hull and Bacon [190],

Nabarro [294], Hirth and Lothe [187], to name a few.

Thus far, disclinations in crystalline solids have received relatively less attention in

comparison to dislocations. Following the treatise of Volterra [436], the first notable

mention of disclinations was in association with liquid crystals [132, 332, 294]. Frank

[132] conceived a disclination to be an isolated line defect in an otherwise perfect

crystal. Nabarro [294] identified these disclination lines as either ”screw-” type with
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Frank’s vector parallel to the disclination line or ”edge-” type with Frank’s vector

perpendicular to the disclination line; these later came to be known as wedge and

twist disclinations, respectively. Nabarro remarked that the rigid-body displacement

forming a general line crystal defect may be resolved uniquely into a translational part

~b and a rotational part ~Ω (recall the discussion on displacement jumps at the begin-

ning of this section). The passage from continuum to a crystalline medium imposes

restrictions on the values of ~b and ~Ω. If a line defect were to exist in a crystalline

material, then the surface cut characterizing this defect can attain only those orienta-

tions in the crystal that do not change its essential properties, i.e. ~b and ~Ω. Focusing

on the Frank’s vector, it has to be in the order of |~Ω| = 2pπ, p = 0,±1,±2 . . . , for

a disclination to exist in a crystal possessing rotational axes corresponding to 1-fold

rotational symmetry. Lattices of higher symmetry have rotation axes of higher order

and correspondingly smaller values of |~Ω|. In general an s-fold rotation axis leads to

the permissible values of |~Ω| = 2pπ
s

(p = 0,±1,±2 . . . ). These type of disclinations

which are a function of the lattice rotational symmetry are known as full disclina-

tions. Figure 2.25 shows full wedge disclinations with strengths |~Ω| = ±2π,±π,±π/2

and ±π/3. Such type of disclinations can exist only if the crystal has 1-fold, 2-fold,

4-fold or 6-fold rotational symmetry. For example, it is mathematically possible for a

lattice with cubic symmetry to have disclinations of strengths |~Ω| = ±2π,±π,±2π/3

and ±π/2 corresponding to its 1-fold, 2-fold, 3-fold and 4-fold rotational symmetries,

respectively.

A closer examination of figure 2.25 (where the black lines are used to denote lattice

planes) indicates that the lattice strains are not reducing to zero at large distances.

In fact, the formulae in equation (2.25) indicate that they increase logarithmically as

can be visualized from figure 2.14. Nabarro explained this by performing a physical

experiment using rubber models of crystals. He remarked that attempts to make

rubber models of crystals with full disclinations indicated that such configurations are
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Figure 2.25: Nabarro’s [294] representation of crystalline disclinations associated
with s-fold crystal symmetry axis: (a),(b) Positive and negative wedge disclinations

with 1-fold symmetry (|~Ω| = ±2π), (c),(d) positive and negative wedge disclina-

tions with 2-fold symmetry (|~Ω| = ±π), (e) positive wedge disclination with 4-fold

symmetry (|~Ω| = ±π/2), and (f) positive wedge disclination with 6-fold symmetry

(|~Ω| = ±π/3). Symmetry axes indicated by single or double arrow heads.
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not likely to occur in crystalline solids. However, models made using a pile of cards

(which are allowed to slide over one another) revealed that disclinations could exist in

materials where the lattice planes were not restricted to maintain lateral registry. For

example, consider the negative wedge disclination with the 2-fold symmetry shown in

figure 2.25(d). The lattice maintains a uniform order of arrangement of atoms which

leads to diverging lattice strains. However, if the planes were allowed to move laterally

then this would lead to a more relaxed structure such as that shown in figure 2.26.

Such is usually not the case in crystalline solids but it is possible in liquid crystals.

For example, such patterns were found in nematic liquid crystals held between two

parallel sheets of glass; patterns for p = −2,−1, 0, 1, 2 and 4 were reported [332, 294].

Figure 2.26: The negative screw disclination of figure 2.25(d) redrawn so that the
lattice planes are no longer in lateral registry. Such configurations occur in liquid
crystals.

Li [251] and Shih and Li [366] advocated the presence of disclinations in crystalline

solids but not in the sense of full disclinations as proposed in the work of Frank [132] or

Nabarro [294]. They proposed a disclination representation of GBs to study the elastic
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energy and GB misorientation correlation in crystalline solids. At the time their model

was proposed, it had become generally accepted that GBs should be represented

using dislocations based on an earlier work by Read and co-workers [323, 324]. These

workers suggested a dislocation based representation of low angle symmetric tilt GBs

where the boundary consisted of a periodic arrangement of equally spaced dislocations

of Burgers vector magnitude b = θd where θ is the misorientation of the boundary and

d is the spacing between adjacent dislocations. Their work was based on experimental

evidence where equally spaced etch pits were observed along a low angle GB in rocksalt

[13]. The relationship between Burgers vector and dislocation spacing was confirmed

in the work of Vogel et al. [435] who observed GB dislocations in Germanium crystals.

Aust and Chalmers [21], measured the elastic energy of GB dislocations in tin and

found this to match with the one predicted by the dislocation based model [323]. Li

[251] remarked that while the dislocation model is appropriate for low angle tilt GBs,

such may not be the case for high angle GBs. As the GB misorientation increases,

the spacing between dislocations decreases until a misorientation is reached when the

cores start overlapping. At that point, while it is geometrically possible to define the

Burgers vector and dislocation line in the coincidence site lattice, the energy values

predicted by the dislocation model are incorrect. In fact, it is possible to obtain a

negative GB energy estimate due to overlapping of dislocation cores. Furthermore,

the dislocation based model was not able to predict the energy of twin boundaries

or coincidence boundaries where the atoms fit well at the coincident lattice sites

and therefore dislocations don’t manifest themselves. Li suggested to replace the

dislocations with their geometrically equivalent disclination dipoles.

The GB model of Li [251] and Shih and Li [366] used disclinations whose strengths

were not equal to those of a full disclination. Such type of disclinations are identified as

partial disclinations. Li represented a GB using a pair of partial disclination dipoles.

The strengths of these dipoles were equal to the difference between misorientations of
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reference GBs. These reference GBs are chosen from those generating energy cusps

in the GB energy vs. misorientation plots. The dipole arm lengths were chosen such

that the misorientation of the GB is conserved. For example, if θ1 and θ2 are the

misorientations of GBs corresponding to the energy cusps, then one period H of a

boundary with misorientation θ (θ1 < θ < θ2) can be represented using two dipoles of

strengths θ1 and θ2 with arm lengths 2L1 and 2L2 such that H = 2(L1 +L2). For the

GB misorientation θ to be conserved, the following relationship needs to be satisfied,

θ =
2L1θ1 + 2L2θ2

2(L1 + L2)
(2.30)

Li [251] proposed an expression for the strain energy per unit area of a disclination

dipole wall as,

E =
G(∆θ)2

8π(1− ν)

H

2π
f(λ1) (2.31)

with

f(λ) = −16

λ∫
0

(λ− ψ) ln(2 sinψ)dψ

λ1 = 2πL1/H

λ2 = 2πL2/H = π − λ1 (2.32)

where f(λ) is a function which depends on the interaction force between disclination

dipoles. Using this relationship, Shih and Li [366] were able to recreate the cusps in

GB vs. misorientation plots and provided a satisfactory match with from experiments

on commercial purity face centered cubic Aluminium [174] and Copper [144]. Figure

2.27 shows the GB energy vs. misorientation plot for [001] symmetric tilt GBs in

Copper obtained from the disclination model of Li [251] and Shih and Li [366]. Their

results are compared with the experimental results of Gjostein and Rhines [144].

This was the first time a continuum based model was able to provide an acceptable

match with experiments. However, Li remarked that the results required choosing
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a combination of lengths L1 and L2 in order to fit the curves. There exist multiple

combinations of L1 and L2 which satisfy the equation (2.30). This is because there

are multiple ways for choosing reference boundaries θ1 and θ2 corresponding to cusp

misorientations. For example, consider the 22.63o [001] symmetric tilt GB in a face

centered cubic material with a period H. If the reference cusp misorientations are

taken as θ1 = 0o and θ2 = 90o then from equation (2.30) the ratio L2/L1 is 2.977.

If now the reference cusp misorientations are taken as θ1 = 0o and θ2 = 36.87o

(as is done in the work of Shih and Li [366]) the same ratio becomes 0.63. These

two choices for L1 and L2 would give the same length of the GB period H but the

GB energy vs. misorientation curve would be different. The model of Li [251] is

not self-contained i.e. it lacks selection rules for specifying the appropriate dipole

arrangement that geometrically represents the GB structure and relies on computer

fitting of experimental data to predict the appropriate structure.

At the time Li [251] and Shih and Li [366] developed their model, the state of

the art of representing GBs was using the coincidence-ledge-dislocation model pro-

posed in the works of Bishop and Chalmers [42] and Chalmers and Gleiter [65]. The

coincidence-ledge-dislocation model proposed that the GB core was made up of pe-

riodically repeating arrangements of atoms called structural units. For one family of

GBs with the same tilt axis, the coincidence-ledge-dislocation model identified those

GBs in which the lattices forming the boundary are exactly coincident i.e. belonging

to the coincident site lattice (CSL). These came to be known as special or favoured

boundaries. For example, in the case of [001] symmetric tilt GBs in a face centered

cubic metal the special GBs were identified as those having misorientations 0o, 22.6o,

28.1o, 36.9o, 53.13o and 90o (shown in figure 2.28). These correspond to the bound-

aries associated with energy cusps in the GB energy vs. misorientation plots. Bishop

and Chalmers [42] suggested that all the other non-special or non-favoured GBs in

the misorientation range can be formed using structural units of the special GBs.
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Figure 2.27: GB energy vs. misorientation plot for commercially pure Cu (adapted
from Shih and Li [366]). The solid line generated using the disclination model [366]
is computer fit with experimental results obtained from the work of Gjostein and
Rhines [144].

However, they faced a similar problem as in the work of Li [251], and Shih and Li

[366], in that their model was unable to identify, from a multitude of possibilities, the

correct type of structural units to represent a particular boundary.

Figure 2.28: Special [001] symmetric tilt GBs with misorientations 0o, 22.6o, 28.1o,
36.9o, 53.13o and 90o with their respective boundary planes {110}, {320}, {530},
{210}, {310} and {100}.

This problem was resolved in the work of Sutton et al. [387, 388, 389, 437] where

a molecular statics method was used to determine the equilibrium atomic structures

of several symmetric and asymmetric tilt GBs in metals. The resulting atomistic
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structural unit model defined rules for determining the GB structure. The model

identifies special boundaries as those which correspond to low Σ values; for a GB

plane with miller indices hkl, Σ = h2 + k2 + l2 for a centered boundary i.e. boundary

with more than one coincidence site lattice and Σ = 1
2
(h2 + k2 + l2) for a non-

centered boundary. The selection criteria for special boundaries is dependent on

the interatomic potential of the material which quite interestingly does not always

predict the lowest Σ value boundaries as special. For example, Σ = 27(115) and

Σ = 11(113) are favoured [11̄0] symmetric tilt GBs in Aluminium but Σ = 9(114)

is not. At the same time, boundaries that can be deemed special may vary for

different metals with the same crystal structure. In order to maintain structural

continuity throughout the misorientation range, all the non-special boundaries should

consist of a periodically reproduced sequence of structural units from their nearest

special boundaries. For example, in the case of [001] symmetric tilt GBs in Copper

having 0o Σ = 1, 36.9o Σ = 5, 53.13o Σ = 5 and 90o Σ = 1 as special boundaries, a

non-special GB with misorientation 16.26o, should contain structural units of special

boundaries 0o and 36.9o.

In order to compute the elastic energy vs. misorientation curve, the following

procedure is used. The structure of every non-special GB is first identified. Con-

sidering the case of 16.26o [001] symmetric tilt GB, if the structural units of the

associated special boundaries are identified as A (for 0o) and B(for 36.9o) then one

period of the 16.26o boundary is represented as |AAAB.AAAB| (the dot indicates

a centered boundary [420]). The larger number of the same type of units in the

boundary are called majority units and the smaller number are called minority units.

The structural unit model postulates that the minority units in a non-special GB

can be conceived as strain inducing perturbations in an otherwise uniform structure

of the special boundary of majority units. Lattice strains are generated due to the

presence of secondary GB dislocations lying at the core of the perturbing minority
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units. These secondary GB dislocations belong to the DSC lattice and are different

from the primary dislocations of the GB, belonging to the crystal lattice. For the

special boundaries, no such minority units exist and they can be represented using

just the primary GB dislocations.

Quite interestingly, Sutton and Vitek [387] reported that the cores of secondary

GB dislocations are smaller than the separation between them (i.e. the characteristic

length of the majority units) such that no ”core overlap” occurs. As a consequence the

argument of Li [251] on the overlapping of dislocation cores at higher GB misorien-

tations does not hold. However, Gertsman et al. [139] recalled the original argument

of Li [251] on disclinations and GBs being rotational type of defects, and proposed to

build upon the dislocation based structural unit model by representing the secondary

GB dislocations with their equivalent disclination dipoles. These dipoles have arm

lengths equal to the characteristic length of a minority unit and their strengths equal

to ∆θ = ±(θ1−θ2) such that the net Burgers vector of the secondary GB dislocations

is conserved. This is known as the disclination structural unit model. For example,

consider a model |AABABABAB| boundary shown in figure 2.29. The B units are

identified as the minority units of characteristic length d′2 associated with the special

boundary of misorientation θ2 while the A units are the majority units of character-

istic length d′1 associated with the special boundary having misorientation θ1. When

the minority and majority units are mixed such that they form the |AABABABAB|,

the characteristic lengths of each unit are changed such that they attain new values

d1 and d2 (here it is assumed that all the structural units of the same type change by

the same amount). Then the minority B units can be represented using disclination

dipoles of strength ∆θ = ±(θ1−θ2) as shown in figure 2.29. This model has been used

to recreate the GB energy vs misorientation plots with an excellent match with exper-

iments and atomistic simulations for the case of non equilibrium GBs in Aluminium

[300], symmetric tilt GBs in diamond [296, 297], and in Nickel and Copper [297, 23],
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Figure 2.29: A model GB with one period represented as |AABABABAB| where A
are the majority units belonging to a special boundary θ1 and B are the minority units
belonging to the special boundary θ2. In the disclination structural unit model, the
minority B units are represented using disclination dipoles of strength ∆θ = ±(θ1−θ2)
with arm length equal to the characteristic length of the minority unit (adapted from
Gertsman et al. [139])

quasi-periodic tilt boundaries of finite extent [276], etc. The disclination structural

unit forms the basis for representing GBs in the present work and is described with

more details in chapter 4.

A disclination based approach has also been used to describe the geometry of TJs

in the work of Bollmann [44, 45, 46, 47]. This work was motivated by the exper-

imental study of Palumbo and Aust [309, 310] who reported observing evidence of
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disclinations along GBs by studying etched recrystallized high purity Nickel. Boll-

mann proposed a methodology to test the possibility of a disclination forming at a

TJ. This involved using the dislocation based O-lattice representation of GBs that

form the TJ. The O-lattice method describes the GBs as mathematical interfaces of

infinitesimal thickness which separate two lattices by a linear translation. This trans-

lation is between the nearest neighbouring points of the two lattices such that it leads

to the minimal dislocation content in the GB. Consider three GBs of infinitesimal

thickness which form a triple-line between grains 1, 2 and 3. Let P , Q and R denote

the transformation matrix of the nearest neighbour relation that transforms a unit

cell from grain 1 to 2, grain 2 to 3, and grain 3 to 1, respectively. Starting from a

unit cell of grain 1, passing through grain 2 to grain 3 and finally arriving back at

grain 1 by means of the matrix product RQP there are two possibilities that can

arise: (i) The sequence arrives at the same unit cell from which it started. In that

case RQP = I, where I is the identity matrix, or (ii) the sequence could lead to

a different unit cell such that RQP = U . Here, U is a uni-modular matrix that

preserves the volume of the unit cell i.e. det(U) = 1. The latter case occurs when

dislocation balance at the triple line is not satisfied. In this case, large long range

stresses are induced in the medium. Bollmann [47] called this triple-line a U -line and

remarked that it possessed the characteristics of a full disclination. In the event that

the dislocation content is balanced at the triple-line there is no disclination formed.

Such a triple-line is called an I-line. For example, triple-lines with tilt GBs having

misorientations +30o, −15o and −15o would give an I-line +30o − 15o − 15o = 0o.

On the other hand, tilt GBs having misorientations +30o, +15o and +15o would give

a U -line +30o + 15o + 15o = 60o.

Shekhar and King [365] attempted at obtaining the stress fields of tri-crystals

separated in orientation via small angle symmetric grain boundaries of misorientations

−4o, 2o, 2o. They used a dislocation based representation of these boundaries to
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obtain the stress fields of the triple junction. Figure 2.30 shows the shear stress

σxy plot for a −4o, 2o, 2o. According to the U -line model of Bollmann [47], this

configuration corresponds to an I-line i.e. there should be no disclination forming

at the triple line. However, Shekhar and King [365] report diverging stress fields as

shown for the component σxy in figure 2.30 which is very similar to the εxy profile

of a wedge disclination shown in figure 14(b). They remarked that the strength of

the partial disclination is dependent on the position of the GB dislocations shown in

figure 2.30.

Figure 2.30: Shear stress σxy (b) for a −4o, 2o, 2o TJ (a) (adapted from Shekhar
and King [365]). φ represent the dihedral angles.

The disclination structural unit model [139] and the disclination based TJ models

[44, 45, 46, 47, 365] define the state of the art of connecting mathematical disclina-

tions to crystallography. Interestingly, while disclinations have already been used to

describe diverse phenomena such as misorientation in hetero-epitaxial diamond films

[273], phase transformation history in epitaxial ferroelectric thin films [130], displace-

ments of Earth’s crust [73], polarization effects and diffraction of electromagnetic

waves [305], etc., their to contribution to plasticity has not been widely documented.

This may have been due to the success of dislocation based plasticity models at the
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meso-scale, or the success of the original structural unit model in predicting mech-

anisms associated with GB mediated plasticity at the atomistic scale, or even due

to general scepticism met by the argument that remotely hints towards presence of

disclinations in crystalline solids, one can only speculate.

2.2.3 Experimental observation of disclinations

In the past decade, increasing experimental evidence has appeared that provides

sufficient proof of the presence of defect structures that exhibit a disclination type

nature in polycrystalline materials, especially those having nano-sized grains. Klemm

et al. [207, 206, 205] reported the presence of screened partial disclinations in cold

rolled Cu, down to 50% of original thickness for a polycrystalline sample, and 70%

thickness reduction of a single crystal Cu. The analysis was performed on Kikuchi

patterns obtained from TEM micro-diffraction experiments. Partial disclinations of

mixed (both twist and wedge) type were found to be arranged in the form of a

quadrupole at the site of a microband (see figure 2.31). Their strengths were reported

to be between 1o − 3o. For an extensive review of experimental indications towards

presence of disclinations in metallic and non-metallic ultra-fine grained materials, the

readers are directed towards the work of Romanov and co-workers [337, 333].

Murayama et al. [291] used HRTEM to observe dislocations terminating at partial

disclinations in nc body centered cubic Fe prepared by mechanical milling. Figure 2.32

shows the terminating dislocations in the encircled region of a 20.5 nm width image

of nc Fe having approximately 6 nm thick crystals. Murayama et al. remarked that

the presence of disclinations confirms that crystals can rotate and undergo turbulent

behavior during severe plastic deformation due to the action of partial disclinations,

as was suggested in the work of Romanov and Vladimirov [339]. Similar disclination

structures were reported in the work of Lei et al. [244] on ball milled Cu-Nb powders.

Liu et al. [254] reported the formation of a wedge disclination to accommodate grain
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Figure 2.31: Microbands in deformed materials and their disclination interpretation:
(a) TEM micrograph of a microband in Cu single crystal rolled down to 70% thickness
reduction at room temperature, Klemm et al. [207], (b) schematics showing cell wall
junctions with disclination quadrupole configuration [333].

Figure 2.32: (A) Experimental HRTEM image of mechanically milled, nc Fe powder
taken in a JEM-4000EX microscope near Scherzer defocus. (B) White lines shown
superimposed periodically on the three sets of 110 planes in (A) to highlight the
distortion of the nearly horizontal set of 110 planes. Black lines are also superimposed
on this set of planes to clearly indicate their position. (C) The nearly horizontal black
and white lines in (B) removed from the HRTEM image so that they are more clearly
visible. Scale bar in (A), 1.0 nm. (adapted from Murayama et al. [291])
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rotation in nc gold thin films. A study on nc Pd prepared by severe plastic deforma-

tion of an inert gas condensate, Rösner et al. [341] observed a disclination dipole along

a Σ9 GB bounded by a TJ formed with two Σ3 twin boundaries and a quadrupole

point formed with three Σ3 boundaries. Using an aberration corrected transmission

electron microscope, the Rösner and co-workers [341] were able to identify a positive

disclination emerging from the triple juncion line along the Σ9 boundary that was

balanced by a negative disclination emerging from the quadrupole point. Upon mea-

suring the rotation change along the Σ9 boundary, a jump in the elastic rotation was

observed (shown in figure 1.2). The study concluded that a disclination dipole existed

along the Σ9 boundary and was essential for stabilizing the structure observed. Al-

though from the equivalence between dislocations and disclinations discussed in the

previous subsection, it may be argued that structures exhibiting a disclination nature

could be specific arrangements of dislocations that are geometrically equivalent to

a disclination [333]. A clear understanding on whether a disclination is a charac-

teristic defect or a degenerate arrangement of dislocations or both, is still an open

question. Nevertheless, these experimental observations highlight the importance of

understanding the contribution of disclinations to plasticity.

The aforementioned experimental studies indicate towards the presence of sta-

tistical disclinations in the microstructure. A method to quantify the disclination

densities was only recently proposed in the work of Beausir and Fressengeas [30].

These workers measured the polar disclination density from orientation maps gen-

erated from ultra-fined grain Cu and nc Al thin films. The ultra-fine grained Cu

sample was prepared by subjecting the coarse grained Cu sample to equi-channel

angular pressing (ECAP) process at room temperature that resulted in an average

shear strain of γ = 2 after the first pass. Orientation mapping was carried out on a

grid with a 0.2 µm step (detailed description of the experimental procedure is given

in Toth et al. [405]). Figure 2.33 shows the quantification of norm of the polar
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disclination density
√
θ2

11 + θ2
22 + θ2

33 and the scalar dislocation measure
√
α2

13 + α2
23

obtained from the main map in figure 2.33(a) along a high angle grain boundary -

figures 2.33(b), (c) and (d) - and low angle grain boundary - figure 2.33(e) -. Absolute

value of maximum polar disclination density component θ33 in the high angle grain

boundary was reported as 5× 1012/µm2.

2.2.4 Need for a fully continuous approach

The advent of high resolution transmission electron microscopy has made it possi-

ble to detect disclinations in polycrystalline materials. Related studies indicate that

disclinations usually manifest themselves in their screened form at crystalline inter-

faces within polycrystals that have undergone severe plastic deformation [207, 206,

205, 291, 341]. However, the information on formation of these disclination struc-

tures, or plastic deformation involving disclinations, could not be extracted from the

experimental observations.

Theoretical models [344, 179, 340, 301, 302, 334, 303, 424, 362, 166, 164, 165,

337, 336, 333, 338] have suggested the inception of disclinations during grain frag-

mentation of coarse grained polycrystalline metals and alloys undergoing large strain

plastic deformation. Rybin [344] and Romanov and Vladimirov [339] suggested that

formation of disclination dipoles and misorientation bands usually takes place near

stress concentrators such as non-equilibrium GBs. In another work, TJs have been

identified as sources of disclination nucleation [345]. The nucleation of disclinations in

the vicinity of TJs has a combined contribution coming from the rotation induced due

to changes in misorientation occurring from accumulation of plastic strain near GBs

and the abrupt orientation change across GB [333]. Gutkin et al. [164] proposed a

discrete disclination dynamics model to provide estimates for the critical shear stress

required to nucleate disclinations. Romanov and co-workers [339, 340] proposed to

modify the Taylor hardening law (σ = αGb
√
ρ, where α is dependent on the active
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Figure 2.33: Pure Cu ECAPed, one pass. Shear strain γ = 2. The main map (a)
represents the scalar disclination measure θ =

√
θ2

11 + θ2
22 + θ2

33 in rad/m−2. The
close-up maps (b), (c) and (d) show respectively the density of wedge disclinations
θ33 (in rad/m−2), the disorientation and the scalar dislocation measure

√
α2

13 + α2
23

in m−1 (i.e. the length of the local Burgers vector per unit surface resulting from the
dislocation densities (α13,α23)) along a high angle grain boundary, while the close-up
map (e) shows θ33 (in rad/m−2) along low angle sub-grain boundaries. In the subsets
(b,e), the arrows represent the local Burgers vectors: their horizontal and vertical
components are respectively α13 and α23 (in m−1). A continuous line indicates the
presence of a disorientation of at least 5◦. The disorientation lies in the range 55◦62◦

along the grain boundary shown in subsets (b,c,d). The black arrows in subset (b)
highlight two successive dipoles with vertical arm lengths, horizontal Burgers vectors
(normal to the arm length) and inverse polarities. Note the inversion of the Burgers
vectors direction in the dipoles interiors. (adapted from Beausir and Fressengeas [30])

slip systems in a crystal and ρ is the statistical dislocation density of the crystal) to

account for hardening due to disclinations. This was used in the work of Seefeldt

[362] where an extensive analysis of the work-hardening mechanisms at large strains
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was performed using a discrete dislocation and disclination approach. Valiev et al.

[424] and Nazarov et al. [302] discuss the disclination induced long-range stress fields

emerging from non-equilibrium GBs and their interaction with dislocations which

modify the mechanical properties of nanocrystals such as root mean square strain,

dilatation and stored energy. For instance, the disclination contribution to dilatation

in ultra-fine grained Al (average grain size 100 nm) was reported to be in the order of

10−4. Junction disclinations are also responsible for long range stresses in nanocrys-

tals [303]. They appear as a result of incompatibility of plastic strain in neighbouring

grains [345]. For further details the author would like to direct the reader towards

the review article by Romanov and Kolesnikova [333].

The common feature between all the models mentioned in this section is their

reliance on a discrete representation of dislocations and disclinations. The geometric

and stress fields reported by these models are computed using either the general in-

tegral forms for curved defects in anisotropic elasticity or, in the limiting case, closed

form solutions in isotropic elasticity similar to the ones presented in section 2.1. As

remarked earlier in the section on discrete line defects, the integral or closed form

solutions are valid only outside the defect core. If these defects are used to represent

GBs in nc materials, then ignoring the defect core may lead to ignoring the ener-

getic contribution of the defected volume; this contribution is significant as will be

shown later in this work. In a recent atomistic study [268], it was noted that the

elasto-plastic response of nc materials is highly dependent on the core structure of

their constituent GBs. For example, the core structure of GBs and their associated

excess free volumes have been shown to influence the nucleation of dislocations at

GBs [411] and shear coupled GB migration [79]. Modelling such structure sensitive

behavior using a discrete defect approach would improperly estimate the bulk me-

chanical response due to the information lost by neglecting the core, irrespective of

the GB representation approach chosen (dislocation or disclination structural unit
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model).

Furthermore, in the discrete approach the compatible elastic strain and curvature

fields are derived from multi-valued elastic displacement and rotation fields as shown

in section 2.1. This could also have consequences. In presence of dislocations, an in-

compatibility is induced in the elastic distortion field due to the discontinuous elastic

displacement field. Similarly, in the presence of disclinations, an incompatibility is

induced in the elastic curvature field due to the discontinuous elastic rotation field.

In representing dislocations (disclinations) with their equivalent disclinations (dislo-

cations), as discussed in section 2.2.1, the out-of-core compatible elastic strain and

curvature may be equivalent but the elastic displacement or rotation fields and the

corresponding incompatibilities in elastic strain and curvature fields are fundamen-

tally different. This information is lost in using just the compatible elastic strain and

curvature fields.

The present work proposes to use a fully continuous representation of disloca-

tions and disclinations. This approach defines defects using their representative polar

densities [306, 216, 288, 94, 289] which in the discrete representation of defects are

singular but in the continuous representation are attributed a finite volume. Such an

approach can account for the structure sensitive response of GBs.

An alternative approach would be to incorporate atomic features into the con-

tinuum approach such as the Peierls-Nabarro [314, 293, 187] model. This model is

developed to understand the motion of dislocations during their slip over the crystal

lattice and proposes expressions for geometric fields that are valid within the disloca-

tion core. However, no such model exists for disclinations; although efforts towards

this are underway.
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2.3 Continuously distributed line defects

This section presents the geometry of continuously represented line crystal defects in

a simply connected domain. The discussion begins by first understanding the geom-

etry of a compatible body i.e. a simply connected body containing no defects. The

compatibility of the medium is ensured by respecting the Saint-Venant’s compatibil-

ity condition on the elastic strain. Failure of Saint-Venant’s compatibility condition

introduces an incompatibility in the material which may arise in the elastic distortion

in presence of dislocations or in the elastic strain and curvature in the presence of

both dislocations and disclinations. The focus is then on deriving the various com-

patible and incompatible geometric quantities. This section can be thought of as an

extension to the incompatible theory of dislocations and disclinations of deWit [94]

deriving motivation from the work of Acharya [2] and Fressengeas et al. [134]. The

derivations are shown using three notations (del operator in textual format, del op-

erator in mathematical format, and the Einstein notation) that are frequently used

in the literature in order to facilitate readability for readers accustomed to any of

these notations. Finally, this section proposes the geometric relationships assuming

that equilibrium is respected everywhere in defect-free or defected simply connected

domain. The derivation of equilibrium equations is left for the next chapter.

2.3.1 Geometric fields of a compatible body

Consider a defect-free simply connected body with volume V and bounded by a sur-

face S (with normal ~n) undergoing an elastic deformation. This state of the body can

be characterized by an elastic displacement vector ~ue that is point-wise continuous i.e.

single valued everywhere in the domain and hence compatible. Therefore, the elastic

distortion, strain, rotation, curvature and higher order gradients of the displacement

are all compatible. In the following, the superscript ‖ identifying the compatible

components is suppressed and will reappear during the discussion on defects where a
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distinction between compatibilities and incompatibilities becomes crucial.

Since the displacement field is single-valued, a compatible elastic distortion field

can be defined as the gradient of the compatible elastic displacement field,

U e = grad ~ue = ∇~ue or U e
ij = uei,j (2.33)

This expression of distortion provides the first compatibility condition for the

material. Assuming that ~ue exists, the definition in equation (2.33) implies that U e

satisfy the following condition,

curlU e = ∇×U e = 0 or ejklU
e
il,k = 0 (2.34)

Conversely, by the potential theory [295] the condition in equation (2.34) is suffi-

cient to ensure the existence of a single-valued continuous elastic displacement field

from equation (2.33) up to a constant rigid body translation.

The compatible elastic strain is defined as the symmetric part of the compatible

elastic distortion and is given as,

εe =
1

2

(
grad ~ue + gradT ~ue

)
=

1

2
(∇~ue + ~ue∇) or εeij = U e

(ij) =
1

2
(ueij + ueji)(2.35)

where ”()” on the indices denote the symmetric part of the tensor. The compatible

elastic rotation tensor is given as the anti-symmetric part of the compatible elastic

distortion,

ωe =
1

2

(
grad ~ue − grad eT~ue

)
=

1

2
(∇~ue − ~ue∇) or ωeij = U e

[ij] =
1

2
(ueij − ueji)(2.36)

Then the compatible elastic distortion tensor is defined as

U e = εe + ωe or U e
ij = εeij + ωeij (2.37)

The elastic rotation rotation can also be described using a vector as follows,

~ωe =
1

2
curl ~ue or ωei =

1

2
eijku

e
k,j (2.38)
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From the above relationship it can be deduced that in the compatible case the

elastic rotations are rigid body rotations. The compatible elastic rotation vector is

related to the compatible elastic rotation tensor as,

~ωe = X(ωe) or ωek = −1

2
eijkω

e
ij (2.39)

ωe = {~ωe} or ωeij = −eijkωek (2.40)

From this definition of compatible elastic strain, the Saint-Venant compatibility

condition can be deduced as,

curl curlT εe = ∇× εe ×∇ = 0 or enmjejklε
e
ik,l = 0 (2.41)

A compatibility condition on the elastic rotation can also be deduced as,

div ~ωe = ∇ · ~ωe = 0 or ωei,i = 0 (2.42)

These compatibility conditions can also be deduced by combining equations (2.37)

and (2.40) to give,

curl (εe + ωe) = curl εe + (div ~ωe)I − gradT ~ωe = 0 or

∇× (εe + ωe) = ∇× εe + (∇ · ~ωe)I − ~ωe∇ = 0 or

ejklε
e
il,k + ωek,kδij − ωej,i = 0 (2.43)

where I is a unit dyadic or the Kronecker delta function. Taking the trace of this

expression gives the equation (2.42). Substituting equation (2.42) in equation (2.43)

gives the following expression,

curl εe − gradT ~ωe = ∇× εe − ~ωe∇ = 0 or ejklε
e
il,k − ωej,i = 0 (2.44)

The transpose of this is also true for a compatible body,

−curl εe − grad ~ωe = −∇× εe −∇~ωe = 0 or −ejklεeil,k − ωei,j = 0 (2.45)
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deWit [94] then considers the converse problem of obtaining the compatible elastic

displacement from the compatibility conditions (2.41) and (2.42). It is found that

these conditions are necessary for the existence of the compatible elastic displacement

but they are not sufficient. Obtaining a unique expression for the compatible elastic

displacement is not the aim of this work, for this the interested reader can derive

motivation from the work of deWit [94].

The second order compatible elastic curvature tensor is defined as the gradient of

the compatible elastic rotation vector as,

κe = grad ~ωe = ∇~ωe or κeij = ωei,j (2.46)

At times this elastic curvature tensor is also identified as the bend/twist (the off-

diagonal components correspond to ’bend’ and the diagonal components correspond

to ’twist’) tensor in order to differentiate it from the Nye’s curvature tensor [306].

However, in this work the latter shall be addressed as the contortion tensor and the

gradient of the elastic rotation field as the elastic curvature.

The compatibility condition on the compatible elastic curvature can then be ob-

tained as,

curl κe = ∇× κe = 0 or ejklκ
e
il,k = 0 (2.47)

This condition is sufficient to ensure the solution of a rotation field up to a constant

rigid body rotation. Another compatibility condition can be obtained by combining

equations (2.45) and (2.47) to give,

κe = −curlT εe = εe ×∇ or κeij = ejklε
e
ik,l (2.48)

The third compatibility condition on the compatible elastic curvature tensor fol-

lows from the above equation through the vanishing of its trace

tr(κe) = 0 or κeii = 0 (2.49)
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Another expression useful in this work, which goes beyond deWit’s treatment of

the compatible elasticity problem is of the compatible third order elastic curvature

tensor defined as the gradient of the compatible elastic rotation tensor proposed in

the work of Kröner [218],

κ̃e = grad ωe =
1

2
grad

(
grad ~ue − gradT ~ue

)
= ∇ωe =

1

2
∇ (∇~ue − ~ue∇) or

κeijk = ωeij,k = U e
[ij],k =

1

2
(uei,jk − uej,ik) (2.50)

Finally, the relationship between the second and third order compatible elastic

curvatures is given as follows,

κ̃e = {κe} or κ̃eijk = −eijlκelk (2.51)

κe = X(κ̃e) or κeij = −1

2
emniκ̃

e
mnj (2.52)

The conditions on compatible elastic distortion, strain, rotation and curvature

together prove the existence of a compatible elastic displacement and rotation field

up to a constant rigid body elastic displacement and rotation, respectively. Note that

for a body undergoing elastic deformation, the compatible elastic geometric quantities

are always equal to the total geometric quantities. Therefore, the equations (2.33) -

(2.52) hold true for total field quantities.

2.3.2 Geometric fields of continuously distributed dislocations

When defects are present and possibly moving within the simply connected domain,

the total geometric field variables have a contribution coming from both elastic and

plastic components. The compatibility conditions on total field quantities (2.34),

(2.41), (2.42), (2.43), (2.44) and (2.47) are always true, but those on the elastic and

plastic components may not be true depending on the type of defect in the material. In

the following, this is tested in the case of geometrically necessary or polar dislocations.

The geometric field equations derived are in harmony with the work of Acharya [2]

and deWit [94].
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Let the elastically deformed simply connected body contain an arbitrary distri-

bution of continuous dislocations with polar density α. Due to the presence of dis-

locations, a local incompatible plastic distortion Up⊥ is induced in the body. This

leads to the generation of an incompatible elastic distortion Ue⊥ in order to maintain

the continuity of the material. The elastic deformation induced due to external loads

results into a compatible elastic distortion field in the medium. A compatible elastic

distortion may also arise from the necessity of maintaining local equilibrium. In the

following, these compatible elastic distortions will be denoted in a combined form

using Ue‖. The entire elastic distortion tensor is then given as,

Ue = Ue‖ +Ue⊥ or U e
ij = U

e‖
ij + U e⊥

ij (2.53)

Note that due to presence of an incompatible elastic distortion, the combined

elastic distortion tensor can no longer be defined as the gradient of the elastic dis-

placement as in equation (2.34). This in spirit with the definition of general elastic

distortions in the work of Bilby [37]. The body could also contain a compatible plastic

distortion distribution such that the combined plastic distortion too can no longer be

defined as a gradient of plastic displacement,

Up = Up‖ +Up⊥ or Up
ij = U

p‖
ij + Up⊥

ij (2.54)

The elastic (2.53) and plastic (2.54) distortions combine to give the total distortion

as follows,

U = Ue +Up = Ue‖ +Ue⊥ +Up‖ +Up⊥ or

Uij = U e
ij + Up

ij = U
e‖
ij + U e⊥

ij + U
p‖
ij + Up⊥

ij (2.55)

This equation along with the necessary condition (2.34) on the compatibility of

total distortion gives the following relationship,

Ue⊥ +Up⊥ = 0 or U e⊥
ij + Up⊥

ij = 0 (2.56)
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Then from this equation the polar dislocation density is defined as,

curlUe⊥ = ∇×Ue⊥ = α or ejklU
e⊥
il,k = αij

curlUp⊥ = ∇×Up⊥ = −α or ejklU
p⊥
il,k = −αij (2.57)

From the Stokes-Helmholtz decomposition of the plastic distortion induced in

the presence of dislocations, the incompatible component is defined as the curl of

a vector field. Therefore, the divergence of incompatible plastic distortion is equal

to zero which further implies that its component normal to the surface of the body

should vanish everywhere on the surface. These augmented conditions are necessary

to ensure that the incompatible plastic distortion vanishes identically throughout the

body when the polar dislocation density is equal to zero.

div Up⊥ = ∇ ·Up⊥ = 0 or Up⊥
ij,j = 0, in V and

Up⊥ · ~n = 0 or Up⊥
ij nj = 0, on S (2.58)

From the Stokes-Helmholtz decomposition of the elastic distortion arising from

the presence of dislocations, the compatible component belongs to the divergence

space and can be defined as a gradient of a continuous vector field. This along with

the definition of the induced elastic distortion from elastic deformation in equation

(2.34) implies that the combined compatible elastic distortion can be defined as a

gradient of a displacement vector field. Therefore, its curl will be equal to zero. The

same holds true for the compatible plastic distortion. This provides the compatibility

condition on compatible elastic and plastic distortion as,

curlUe‖ = ∇×Ue‖ = 0 or ejklU
e‖
il,k = 0

curlUp‖ = ∇×Up‖ = 0 or ejklU
p‖
il,k = 0 (2.59)

Equations (2.57) and (2.59) can then be combined to retrieve the definition of the

polar dislocation density as proposed in the works of Kröner [216], Mura [288], and
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deWit [94],

curlUe = ∇×Ue = α or ejklU
e
il,k = αij

curlUp = ∇×Up = −α or ejklU
p
il,k = −αij (2.60)

The geometric meaning of the equation (2.60) is that in the presence of disloca-

tion distributions α, incompatible elastic distortion Ue is generated to ensure the

continuity of the material. This equation along with (2.58) implies that dislocations

are the sources of incompatible elastic distortion in the medium. Due to the pres-

ence of incompatibility, the elastic distortion cannot be related to a displacement

field as defined in equation (2.33). In the absence of dislocations in the medium, α

and consequently the incompatible component of elastic distortion vanish. Then the

compatible elastic distortion can be related to the displacement tensor using equation

(2.33).

The polar dislocation density needs to respect the following continuity condition,

div α = ∇ ·α = 0 or αij,j = 0 (2.61)

This condition implies that dislocations do not terminate inside the simply con-

nected body. Note that if the body also contains other type of defects, then this

condition may not be satisfied. This shall be evidenced in the next section where

the case of a simply connected body containing both dislocations and disclinations is

considered.

The solution to both equations (2.57) and (2.60) provide uniquely the incompatible

elastic and plastic distortions along with a gradient term that belongs to the null space

of the curl operator.

The elastic and plastic distortions can be separated into symmetric strain and

anti-symmetric rotation components. In the presence of dislocations, the elastic and

plastic rotations remain compatible. However, the elastic and plastic strains have
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both compatible and incompatible components,

εe = εe‖ + εe⊥ or εeij = ε
e‖
ij + εe⊥ij (2.62)

εp = εp‖ + εp⊥ or εpij = ε
p‖
ij + εp⊥ij (2.63)

The elastic and plastic strains combine to give the total strain as

ε = εe + εp = εe‖ + εe⊥ + εp‖ + εp⊥ or

εij = εeij + εpij = ε
e‖
ij + εe⊥ij + ε

p‖
ij + εp⊥ij (2.64)

The compatible components of elastic and plastic strain are also a combination of

a contribution coming from respecting the equilibrium conditions and a contribution

from external stresses. The combined elastic and plastic strain and rotation give,

Ue = εe‖ + εe⊥ + ωe‖ or U e
ij = ε

e‖
ij + εe⊥ij + ωe‖

Up = εp‖ + εp⊥ + ωp‖ or Up
ij = ε

p‖
ij + εp⊥ij + ωp‖ (2.65)

with the following condition on elastic and plastic incompatible strains,

εe⊥ + εp⊥ = 0 or εe⊥ij + εp⊥ij = 0 (2.66)

This condition ensures that the total geometric fields always remain compatible. Note

that in the presence of dislocations, the elastic and plastic rotations are compatible.

Therefore, the incompatible elastic and plastic distortions are equal to the incompat-

ible elastic and plastic strain,

Ue⊥ = εe⊥ or U e⊥
ij = εe⊥ij

Up⊥ = εp⊥ or Up⊥
ij = εp⊥ij (2.67)

Substituting the elastic and plastic distortions from equation (2.65) into equation

(2.60) gives the following expressions for polar dislocation density,

curl εe⊥ + (div ~ωe‖)I − gradT ~ωe‖ = ∇× εe⊥ + (∇ · ~ωe‖)I − ~ωe‖∇ = α or
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ejklε
e⊥
il,k + ω

e‖
k,kδij − ω

e‖
j,i = αij (2.68)

curl εp⊥ + (div ~ωp‖)I − gradT ~ωp‖ = ∇× εp⊥ + (∇ · ~ωp‖)I − ~ωp‖∇ = −α or

ejklε
p⊥
il,k + ω

p‖
k,kδij − ω

p‖
j,i = −αij (2.69)

Taking the trace of the above equations (2.68) and (2.69) one gets,

div ~ωe‖ = ∇ · ~ωe‖ =
1

2
tr(α) or ω

e‖
i,i =

1

2
αjj (2.70)

div ~ωp‖ = ∇ · ~ωp‖ = −1

2
tr(α) or ω

p‖
i,i = −1

2
αjj (2.71)

Note that contrary to the case of a defect free body, in the presence of dislocations

the trace of the elastic rotation tensor is non-vanishing.

Taking motivation from the Saint-Venant compatibility condition (2.41), the equa-

tions (2.68) and (2.69) can be combined with equation (2.70) to obtain the following

relationship,

grad ~ωe‖ = ∇~ωe‖ = curlT εe⊥ +K = εe⊥ ×∇+K or ω
e‖
i,j = ejklε

e⊥
il,k +Kij(2.72)

grad ~ωp‖ = ∇~ωp‖ = curlT εp⊥ −K = εp⊥ ×∇−K or ω
p‖
i,j = ejklε

p⊥
il,k −Kij(2.73)

where K is the Nye’s curvature tensor [306] or the contortion tensor. Recall that

this is not the same as the second order curvature tensor nor equivalent to the third

order curvature tensor described in this work. It is defined as,

K =
1

2
tr(α)I −αT or Kij =

1

2
αkkδij − αji (2.74)

Recalling the definition of the second order curvature tensor as the gradient of the

rotation, one obtains a relationship between the elastic and plastic curvatures and

the contortion tensor as,

κe‖ = curlT εe⊥ +K = εe⊥ ×∇+K or κ
e‖
ij = ejklε

e⊥
il,k +Kij (2.75)

κp‖ = curlT εp⊥ −K = εp⊥ ×∇−K or κ
p‖
ij = ejklε

p⊥
il,k −Kij (2.76)
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In the presence of dislocations, the elastic and plastic third order curvature are

compatible κ̃e,p‖ and are related to the elastic and plastic second order curvature,

respectively, via equations (2.51) and (2.52).

The contortion tensor is sometimes used to estimate the curvature tensors by

neglecting the contribution of incompatible elastic and plastic strains. Such an ap-

proximation has already been employed in experimental analysis to estimate the polar

dislocation density [103, 119, 311] using the relationship,

α = tr(K)I −KT or αij = Kkkδij −Kji (2.77)

If in addition the incompatible elastic strain contribution were to be recovered

(for example using data from electron diffraction studies [454, 195, 433]) then the

dislocation density can be more accurately estimated.

Taking the curl of equations (2.72) and (2.73) gives the compatibility conditions

on elastic and plastic curvatures,

curl κe‖ = ∇× κe‖ = curl curlT εe⊥ + curlK = ∇× εe⊥ ×∇+∇×K = 0 or

ejklκ
e‖
il,k = ejmnenklε

e⊥
ik,l + ejklKil,k = 0 (2.78)

curl κp‖ = ∇× κp‖ = curl curlT εp⊥ − curlK = ∇× εp⊥ ×∇−∇×K = 0 or

ejklκ
p‖
il,k = ejmnenklε

p⊥
ik,l − ejklKil,k = 0 (2.79)

In a defect-free simply connected medium, the Saint-Venant’s compatibility con-

dition (2.41) on elastic strain is well respect everywhere. However, in the presence

of dislocations this condition is no longer respected and an incompatibility η is in-

troduced in the medium at the location where the dislocation densities are non-zero.

The incompatibility tensor η is defined as,

curl curlT εe⊥ = ∇× εe⊥ ×∇ = η or ejmnenklε
e⊥
ik,l = ηij (2.80)
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From equations (2.66) and (2.80) the following relationship between the incom-

patibility tensor and incompatible plastic strain can be deduced,

curl curlT εp⊥ = ∇× εp⊥ ×∇ = −η or ejmnenklε
p⊥
ik,l = −ηij (2.81)

A relationship between contortion tensor and the incompatibility tensor can be

deduced from equations (2.78), (2.79), (2.80) and (2.81) as follows,

curlK = ∇×K = η or ejklKil,k = ηij (2.82)

And lastly, the relationship between the incompatibility tensor and the dislocation

density tensor can be obtained from equation (2.80) and the curl of equation (2.68),

(curlT α)s = (α×∇)s = η or
1

2
(ejklαik,l + eiklαjk,l) = ηij (2.83)

The continuity condition on incompatibility tensor is given as,

div η = ∇ · η = 0 or ηij,j = 0 (2.84)

The geometric meaning of this equation is that the incompatibility is conserved in

the body. Equations (2.80) to (2.83) show that when the incompatible elastic strain,

dislocation density and the contortion point-wise vanish everywhere in the domain,

the incompatibility η also vanishes.

The Burgers vector for a simply-connected body containing dislocations is defined

as,

~b =

∮
C

dr ·Ue or bi =

∮
C

drjU
e
ij (2.85)

where C is a closed curve called the Burgers circuit similar to that shown in figure

(2.3). Recalling the Stokes theorem where the line integral of a tensor field is equal to

the surface integral of the curl of that tensor field, from equations (2.60) and (2.85)

the Burgers vector can be related to the polar dislocation density,

~b =

∫
S

dS ·α or bi =

∫
S

dSnjαij (2.86)
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where S is any (defect) surface inside the body bounded by C. From the above

relationship (2.86), it can be deduced that the diagonal and off-diagonal components

of the polar dislocation density correspond to the screw and edge components of the

dislocation, respectively.

In order to respect the continuity condition (2.61) on the polar dislocation density,

the net Burgers vector content in the simply connected body V should be equal to

zero. If in equation (2.86) S is a closed surface bounding a volume V then using the

divergence theorem and equation (2.61) it is found that,

~bnet =

∫
V

dV div α =

∫
V

dV∇ ·α = 0 or bneti =

∫
V

dV αij,j = 0 (2.87)

2.3.3 Geometric fields of continuously distributed dislocations and discli-
nations

Let the elastically deforming simply connected body now contain an arbitrary dis-

tribution of continuous dislocations and disclinations with polar densities α and θ,

respectively. Due to the presence of disclinations, a local incompatible plastic cur-

vature κp⊥ is induced in the body. This leads to the generation of an incompatible

elastic curvature κe⊥. A compatible elastic curvature may also arise from the neces-

sity of maintaining local equilibrium and from elastic deformation inducing moments.

This combined compatible elastic curvature is denoted by κe‖. Similar to the elastic

and plastic distortions in the sole presence of dislocations, in the combined presence

of dislocations and disclinations the elastic and plastic strain tensors are defined as

in equation (2.62) along with the elastic and plastic curvature tensors as follows,

κe = κe‖ + κe⊥ or κeij = κ
e‖
ij + κe⊥ij (2.88)

κp = κp‖ + κp⊥ or κpij = κ
p‖
ij + κp⊥ij (2.89)

The compatible elastic and plastic curvature are defined as the combination of

the component necessary to satisfy equilibrium along with the contribution from the
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imposed elastic deformation. In the presence of disclinations, both the compatible and

incompatible components of the second κe,p and third κ̃e,p order compatible elastic

and plastic curvatures are also related via equations (2.51) and (2.52). The elastic

and plastic curvatures combine to give the total curvature as follows,

κ = κe + κp = κe‖ + κe⊥ + κp‖ + κp⊥ or

κij = κeij + κpij = κ
e‖
ij + κe⊥ij + κ

p‖
ij + κp⊥ij (2.90)

This equation along with the necessary condition (2.47) on the compatibility of

total curvature gives the following relationship,

κe⊥ + κp⊥ = 0 or κe⊥ij + κp⊥ij = 0 (2.91)

From here the polar disclination density can be defined as,

curl κe⊥ = ∇× κe⊥ = θ or ejklκ
e⊥
il,k = θij

curl κp⊥ = ∇× κp⊥ = −θ or ejklκ
p⊥
il,k = −θij (2.92)

Then the compatibility condition on polar disclination density is given as,

div θ = ∇ · θ = 0 or θij,j = 0 (2.93)

This condition implies that disclinations do not end inside the simply connected body.

Similar to the previous case of plastic distortions, the incompatible plastic cur-

vature should vanish identically throughout the body when the polar disclination

density is equal to zero. This enforces augmented conditions on the incompatible

plastic curvature,

div κp⊥ = ∇ · κp⊥ = 0 or κp⊥ij,j = 0, in V and

κp⊥ · ~n = 0 or κp⊥ij nj = 0, on S (2.94)

As a consequence of incompatibilities in elastic and plastic curvature, the elastic

and plastic rotation fields are undefined and consequently from equation (2.65) the
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elastic and plastic distortion fields are undefined. Therefore in the presence of discli-

nations only the elastic and plastic strain and curvature fields and their gradients

should be considered. The presence of disclinations entails the following augmented

conditions on plastic strain (instead of those on plastic distortion as shown in equation

2.58),

div εp⊥ = ∇ · εp⊥ = 0 or εp⊥ij,j = 0, in V and

εp⊥ · ~n = 0 or εp⊥ij nj = 0, on S (2.95)

The compatibility condition on compatible elastic and plastic curvature have al-

ready been presented in equations (2.78) and (2.79). These can then be combined

with equation (2.92) to retrieve the definition of the polar disclination density as

proposed in the work of deWit [94],

curl κe = ∇× κe = θ or ejklκ
e
il,k = θij (2.96)

curl κp = ∇× κp = −θ or ejklκ
p
il,k = −θij (2.97)

The geometric meaning of the equations (2.92) and (2.96) is that in the presence

of disclination distributions θ, incompatible elastic curvatures are generated to ensure

the continuity of the material. Consequently these equations combined with (2.91)

and (2.94) show that disclinations are sources of incompatible elastic curvature in

the medium. Due to the presence of incompatibility, the elastic curvature cannot

be related to an elastic rotation field as defined in equation (2.46). In the absence

of disclinations in the medium, θ and consequently the incompatible component of

elastic curvature vanish. The elastic curvature can then be related to the elastic

rotation tensor using equation (2.46).

The solution to equations (2.92), (2.96) and (2.97) provide uniquely the incom-

patible elastic and plastic curvatures along upto a constant gradient term (belonging

to the null space of the curl operator).
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The dislocation density equation (2.69) needs to be updated since the elastic and

plastic rotations are undefined and the presence of incompatible elastic and plastic

curvature need to be accounted for. Therefore,

curl εe⊥ + tr(κe(‖+⊥))I − κe(‖+⊥)T = ∇× εe⊥ + tr(κe(‖+⊥))I − κe(‖+⊥)T = α or

ejklε
e⊥
il,k + κ

e(‖+⊥)
kk δij − κe(‖+⊥)

ji = αij (2.98)

curl εp⊥ + tr(κp(‖+⊥))I − κe(‖+⊥)T = ∇× εp⊥ + tr(κp(‖+⊥))I − κe(‖+⊥)T = α or

ejklε
p⊥
il,k + κ

p(‖+⊥)
kk δij − κp(‖+⊥)

ji = −αij (2.99)

Equation (2.99) implies that an arbitrary plastic strain and curvature leads to

dislocations. Note that it is the combined compatible and incompatible elastic and

plastic curvatures that contribute to the dislocation density. The geometric mean-

ing of the equations (2.96) and (2.98) is that in the presence of both dislocation

and disclination distributions α and θ, elastic strain εe and curvature κe are gen-

erated to ensure the continuity of the material. Consequently these equations show

that disclinations and dislocations are sources of elastic strain and curvature in the

medium.

The contortion tensor in equation (2.75) too needs to be redefined to account for

the incompatible elastic and plastic curvatures,

κe(‖+⊥) = curlT εe⊥ +K = εe⊥ ×∇+K or κ
e(‖+⊥)
ij = ejklε

e⊥
il,k +Kij (2.100)

κp(‖+⊥) = curlT εp⊥ −K = εp⊥ ×∇−K or κ
p(‖+⊥)
ij = ejklε

p⊥
il,k −Kij (2.101)

In the presence of both dislocations and disclinations, the incompatibility tensor

is given as,

η = curlK − θ = ∇×K − θ or ejklKil,k − θij = ηij (2.102)

η = (curlT α− θ)s = (α×∇− θ)s or
1

2
(ejklαik,l + eiklαjk,l)− θ(ij) = ηij (2.103)

The continuity condition for polar dislocation density is given as,

div α+ 2~θ = ∇ ·α+ 2~θ = 0 or αij,j − eiklθkl = 0 (2.104)
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Contrary to the case of sole presence of dislocations in the simply connected do-

main, the divergence of the dislocation density is not equal to zero when disclinations

are also present in the medium. Equation (2.104) implies that dislocations termi-

nate at disclinations. This was evidenced in the experimental work of Murayama et

al. [291] where lines of partial dislocations terminated at disclinations in nc body

centered cubic Fe as shown in figure 2.32 in section 2.2.2.

The relationship between contortion and the polar disclination density is derived

as,

grad (trK)− divT K + 2~θ = ∇(trK)−K · ∇+ 2~θ = 0 or

Kmm,i −Kji,j − eiklθkl = 0 (2.105)

From equations (2.103) and (2.104) it can be found that the continuity condition

on incompatibility (2.84) is also respected in the presence of both dislocations and

disclinations.

By virtue of Weingarten’s theorem (recall from section 2.1), in the presence of

both dislocations and disclinations it is possible to define the Frank’s vector and the

general Burgers vector in terms of the compatible and incompatible components of

elastic curvatures and strains:

~Ω =

∮
C

dr · κe(‖+⊥) or Ωi =

∮
C

drjκ
e(‖+⊥)
ij (2.106)

~b =

∮
C

dr · (εe(‖+⊥) − (κe(‖+⊥)T × ~r)T ) or bi =

∮
C

drj(ε
e(‖+⊥)
ij − eiklκe(‖+⊥)

kj rl) (2.107)

Using Stokes’ theorem, the Frank’s and Burgers vector can be related to the polar

defect densities by,

~Ω =

∫
S

dS · θ or Ωi =

∫
S

dSnjθij (2.108)

~b =

∫
S

dS · (α− (θT × ~r)T ) or bi =

∫
S

dSnj(αij − eiklθkjrl) (2.109)

In section 2.3.2 it was shown that the diagonal and off-diagonal components of

the polar dislocation density correspond to the screw and edge components of the
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dislocation, respectively. Similarly, the diagonal and off-diagonal components of the

disclination density tensor correspond to the wedge and twist components of the

disclination.

The term (θT×~r)T accounts for the delocalization of the disclination core discussed

in section 2.1.2. The Burgers content within a volume bounded by the surface S is a

function of the position of the disclination core.

If S is a closed surface bounding a volume V then using the divergence theorem

it is found that,

~Ωnet =

∫
V

dV div θ =

∫
V

dV∇ · θ = 0 or Ωnet
i =

∫
V

dV θij,j = 0 (2.110)

~bnet =

∫
V

dV div (α− (θT × r)T ) =

∫
V

dV∇ · (α− (θT × r)T ) = 0 or

bneti =

∫
V

dV (αij,j − {eiklθkjrl},j) = 0 (2.111)

Thus, similar to the case of dislocations, the continuity conditions on polar defect

densities ensures conservation of both Franks and Burgers vectors in the medium.

Note that in the absence of disclinations, the Frank’s vector is equal to zero everywhere

in the domain and the net Burgers vector is conserved following from equation (2.87).

In the absence of both dislocations and disclinations, both Burgers and Frank’s vectors

are zero everywhere in the domain. From here a general remark can be made that

contributes to defining the characteristics of a simply connected body: For a defect-

free or line defected body to be deemed simply connected, the conditions (2.110) and

(2.111) on the net Burgers and Frank’s vector need to be satisfied.

2.4 Understanding incompatibility

The term ’incompatibility’ has evolved over the better part of the last century. The

development shown in the previous section is its most recent interpretation which was

introduced in the works of Acharya [2] and Fressengeas et al. [134]. It is important to
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understand the differences between the original and current interpretations of incom-

patibility in order to characterize the presented incompatible theory of continuously

distributed defects.

Origin of the term ”incompatibility” finds its traces in the early work of Rießner

[325] who studied the problem of the eigen or incompatible stress state of an elastic

body. The body was assumed to possess an incompatible stress state due to a history

of plastic deformation. At the time when the concept was introduced the connection

of dislocation with crystallography had not yet been made. Then the generation of

such a stress state was understood as follows. Let a stress free body V contain an

element V ′ bounded by a surface S ′, as shown in figure 2.34. Let this element be

cut out and isolated from the remainder of the body (V − V ′). Now, let the element

and the remainder of the body be subjected to plastic deformation while in isolation.

Without the loss of generality, it can be assumed that each body undergoes a shape

change in a manner different from the other one. Then an attempt at reassembling

the two volumes would result into a set of non-fitting bodies. If the element V ′

and the remainder of the body V − V ′ were to reform a compact body, then V ′

(or V − V ′, or both) would have to subjected to external forces inducing elastic

deformation such that it fits into the deformed cavity in V − V ′. Upon removal

of these forces, an incompatible stress state would necessarily generate in order to

maintain the continuity of the medium. The final configuration in shown in figure

2.34(d).

The connection of an incompatible stress state with dislocations was proposed

at the time of increasing experimental evidence for dislocations in the mid 1900’s.

The concept of incompatible elastic distortion was introduced in the works of Eckart

[102], Kondo [211], Bilby and co-workers [38, 40, 39, 37], Eshelby [111], Kröner [217],

among others. This incompatible elastic distortion was deemed to be induced as

a result of geometrically necessary dislocations generated in order to maintain the
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Figure 2.34: Understanding incompatibility as interpreted before the appearance of
experimental evidence on dislocations: (a) A body of volume V , (b) with an element
V ′ isolated from the remainer of the body V − V ′ and subjected to plastic deforma-
tion such that both the sub-volumes are transformed into (c) non-fitting elements.
External forces are applied on V ′ such that it fits into the cavity in V − V ′. Upon
removal of these forces, incompatibilities - shown in red (d) - are generated in order
to maintain the continuity of the material.
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continuity of the medium. Therefore, the incompatible elastic distortion resulted in

the generation of the incompatible stress state of the medium. Such an incompatible

elastic distortion – formerly termed as lattice correspondence function [37] – was

introduced as a replacement for the deformation gradient used in classical elasticity.

In general, this incompatible elastic distortion is not associated to any displacement

field but in absence of dislocations it is equal to the gradient of elastic displacement.

These early developments served as a basis for dislocation based finite strain crystal

plasticity theories [329, 401, 182, 18, 315, 177, 27] at the meso-scale (sub-grain or

single grain of size ≈ 10−7m− 10−6m). The works of Kondo [211], Bilby [38], Kröner

[217], and others also motivated the development of plasticity theories at the macro-

scale [242, 25, 81, 275, 274, 352]. Recently, Clayton et al. [77] proposed a multi-scale

plasticity model by building upon the incompatible elastic distortion proposed in the

works of [102, 211, 38, 40, 111, 39, 217, 37] in order to study the internal state of

a material while obtaining its macroscopic mechanical response. An extension to

include disclinations was also proposed in the same work [77].

At the meso-scale, a typical realization of an incompatible stress state as inter-

preted by the aforementioned crystal plasticity models can be explained as follows.

Reconsider the body V shown in figure 2.34. Let this body be simply connected

containing an arbitrary distribution of defects such that it respects the conditions

(2.110) and (2.111). Local stresses will be generated due to the presence of incom-

patible elastic strains and curvatures. Now let the surface S′ bound a volume V ′

within the body such that it too contains an arbitrary distribution of defects but

with a net polarity represented by non-zero ~b = b1 and ~Ω = Ω1. Then the remainder

of the body (V − V ′) will have a net polarity of ~b = −~b and ~Ω = −~Ω in order to

conserve the Burgers and Frank’s vectors in the whole body V . Now let the body

V ′ be isolated from the remainder of the material V − V ′ as shown in figure 2.35(b).

Here it is assumed that the isolation process is isentropic i.e. does not produce a
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Figure 2.35: Understanding incompatibility as interpreted in the work of Bilby [37],
Clayton et al. [77]: (a) A body of volume V with net Burgers and Franks vector

equal to zero, (b) contains an element V ′ having |~b| = b and |~b| = Ω, respectively,

is isolated from the remainer of the body V − V ′ (|~b| = −b and |~b| = −Ω). These
volumes are subjected to the same kind of plastic deformation such that both are
transformed into (c) non-fitting elements with |~b| = b1 and |~b| = −Ω1 in . External
forces are applied on V ′ such that it fits into the cavity in V − V ′. Upon removal of
these forces, incompatibilities - shown in red (d) - are generated in order to maintain
the continuity of the material. Color code for dots: yellow - original defects in V −V ′,
orange - original defects in V ′, cyan - new defects in V − V ′ and navy blue - new
defects in V ′.
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rearrangement of defects within the volume. Then body V − V ′ becomes multiply

connected, and the Burgers and Frank’s vectors are not conserved in either of these

bodies. Next both these isolated volumes are subjected to the same kind of plas-

tic deformation process. In general, due to their arbitrary distribution, the defects

would evolve in a different manner in each volume leading to some combination of

rearranged, nucleated or annihilated defects as shown in figure 2.35(c). This pro-

vides an explanation for the shape changes which, in general, are different for both

these volumes. Body V ′ and body V − V ′ now are non-fitting elements. Without

the loss of generality, let the new Burgers and Frank’s vectors in V ′ be ~b1 and ~Ω1

and those in V − V ′ be ~b2 and ~Ω2, respectively. The combined polarity of these

volumes is represented by ~b1 + ~b2 and ~Ω1 + ~Ω2. Now, let both these volumes be

elastically deformed under the action of external constraints such that they can be

combined to reform a compact simply connected body V . Upon removal of these

external constraints, incompatibilities should necessarily be generated to respect the

continuity of the material. Furthermore, the conservation of Burgers and Frank’s

vectors in V would imply that these incompatibilities correspond a net polarity of

−(~b1 +~b2) and −(~Ω1 + ~Ω2). The final configuration is shown in figure 2.35(d). In

general, a net non zero Burgers and Frank’s vector result in the generation of polar

dislocation and disclinations densities. Therefore, polar dislocations and disclinations

are geometrically necessary to maintain the continuity of the medium.

Acharya [2] refined the meaning of compatibility and incompatibility by revis-

iting the definitions of incompatible elastic and plastic distortion. Starting from a

mathematical argument, Acharya [2] proposed that the elastic distortion can be or-

thogonally decomposed in a unique fashion using the Stokes-Helmholtz decomposition

such that one component belongs to the divergence space (i.e. its curl is equal to

zero) and the other component belongs to the curl space (i.e. its gradient is zero).

In general, any first or higher order tensor that is well-defined in a given domain
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can be decomposed in such a manner. The term having a zero curl is defined as the

compatible component (represented using ||) and can be defined using a gradient of

a vector field (say ~v), such that U e‖ = ∇~v. The component belonging to the curl

space is defined as the incompatible component U e⊥. As seen in section 2.3.2, the

incompatible elastic distortion U e⊥ is generated in the presence of a continuous dis-

tribution of dislocations of density α. The latter is related to the former via equation

(2.57). Now, taking the curl of the entire elastic distortion tensor U e, which is defined

as U e = U e‖ +U e⊥, would give curlU e = curlU e⊥ which is a unique well-defined

solution. The converse procedure, however, does not yield a unique solution. If the

latter equality were to be integrated, the solution thus obtained would be exact but

only up to a constant gradient term i.e. U e = ∇~w +U e⊥ . Acharya remarked that

∇~w is the compatible elastic distortion Ue‖ (seen in section 2.3.2) which is necessary

to respect the equilibrium condition on Cauchy stresses as shown in equation (2.6).

If a simply connected body containing an arbitrary distribution of dislocations with

density α was undergoing an elastic deformation, then compatible elastic distortions

would evolve (i) because of the external constraints and (ii) because of the necessity

to respect local equilibrium conditions which depend on the new configuration.

Fressengeas et al. [134] extended the dislocation model of Acharya to account for

both dislocations and disclinations. Recall that in the presence of disclinations, the

elastic distortion is no longer defined since it is related to the undefined elastic rota-

tion. In this case, Fressengeas et al. showed that the dislocation density is associated

with the incompatible component of elastic and plastic strain and both compatible

and incompatible components of elastic and plastic curvature as in equations (2.98)

and (2.99).

Reconsidering the simply connected body with an arbitrary distribution of disloca-

tions and disclinations shown in figure 2.35, each defect is associated with a non-zero
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local compatible (shown in colored || signs) and incompatible elastic strain and cur-

vature fields. In figure 2.36(a), the dots represent an arbitrary combination of α and

θ. Conservation of the Burgers and Frank’s vector is ensured through the net incom-

patibility going to zero. However, the net compatible elastic strains and curvatures

may not necessarily be zero. Next, the volume V ′ is isentropically isolated from the

remainder of the body such that the incompatible content and arrangement would

remain the same. However, the compatible fields are fully recoverable and in general

they would change in order to satisfy equilibrium corresponding to the new isolated

configurations as shown by the single apostrophes in figure 2.36(b). Plastic deforma-

tion of both volumes would lead to rearrangement and/or nucleation or annihilation

of defects in the material changing the defect content in V ′ to |~b| = b1 and |~Ω| = Ω1

and in V − V ′ to |~b| = b2 and |~Ω| = Ω2, without the loss of generality. The com-

patible elastic fields would also change in order to respect the equilibrium of the new

configuration. These are shown by double apostrophes in the figure 2.36(c). Finally,

upon reassembly of the simply connected body, a geometrically necessary incompat-

ibility is generated at the interface whose strength corresponds to |~b| = −(b1 + b2)

and |~Ω| = −(Ω1 + Ω2) to ensure the conservation of Burgers and Frank’s vectors,

respectively. The overall compatible elastic field configuration is again transformed

in order to respect the equilibrium in newly reformed simply connected domain. The

final configuration of the system is shown in figure 2.36(d). Note that the along with

compatible and incompatible elastic fields, the compatible and incompatible plastic

fields too may be affected.

2.5 Summary and discussion

This chapter begins by providing a review on the development of the theory of line

defects i.e. dislocations and disclinations, with special emphasis on disclinations and

their connection with crystallography. The static theory of discrete dislocations and

92



Figure 2.36: Understanding incompatibility as interpreted in the work of Acharya
[2] and Fressengeas et al. [134]: (a) A body of volume V with net Burgers and

Frank’s vector equal to zero, (b) contains an element V ′ having |~b| = b and |~b| = Ω,

respectively, is isolated from the remainer of the body V −V ′ (|~b| = −b and |~b| = −Ω).
These volumes are subjected to the same kind of plastic deformation such that both
are transformed into (c) non-fitting elements with |~b| = b1 and |~b| = −Ω1 in . External
forces are applied on V ′ such that it fits into the cavity in V − V ′. Upon removal of
these forces, incompatibilities - shown in red (d) - are generated in order to maintain
the continuity of the material. Color code for dots: yellow - original defects in V −V ′,
orange - original defects in V ′, cyan - new defects in V −V ′ and navy blue - new defects
in V ′. || denotes some combination of compatible elastic strain and curvature fields
and the apostrophes represent the changing compatible elastic field configurations.

disclinations as proposed in the work of deWit [95, 96, 97]. The equilibrium solutions

and kinematic relationships for geometric fields i.e. elastic displacements, distortions,

strains, rotations, curvatures, and the Cauchy stresses are derived assuming that equi-

librium conditions are satisfied everywhere in the continuous domain, including the
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defect lines. deWit’s point of view on equilibrium being respected is with respect to

a simply connected domain and is fundamentally different from the approaches taken

by Volterra [436], Nabarro [294], etc. In the work of Volterra, and Nabarro, equi-

librium expressions for the aforementioned geometric and stress fields are proposed

outside of the defect core region delimited by a cut-off radius thus making the body

multiply connected. The defect core region is assumed to not satisfy the equilibrium

conditions. Both these approaches provide the same closed form solutions for the

compatible geometric fields and their corresponding Cauchy stresses outside the core

of the defects. While the method of Volterra, Nabarro and others is not applicable

within the core, deWit’s discrete approach too fails within the core region due to the

singularity associated at the defect line. Furthermore, incompatible geometric fields

are not being accommodated within this framework.

The continuous description of the defects within a simply connected body, which

deWit [94, 95, 96, 97] used to propose closed form solutions in the discrete case, forms

an appropriate basis to account for these incompatibilities induced in presence of dis-

locations and disclinations. This continuous approach reinterprets the core of defects

in terms of zones of non-zero incompatibility. This associates the polar densities of

dislocations and disclinations directly to the defect core. Using this description an

incompatible theory of continuously distributed dislocations, and dislocations and

disclinations was proposed in the work of Acharya [2] and Fressengeas et al. [134],

respectively. This chapter recalls the continuous description of compatible and in-

compatible geometric fields associated with the presence of defects by assuming that

equilibrium is satisfied everywhere in the simply connected domain. The derivations

of these and connection of geometry of continuous defects with statics and dynamics

is provided in the next chapter.
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2.6 Conclusion

This chapter highlights the importance of modelling disclinations in nc materials and

their relationship with dislocations. To that end, methodologies based on the discrete

and continuous representation of these defects are presented. The latter approach

which accounts for the incompatibilities in lattice strains and curvatures is found to

be the most appropriate to achieve the aim of this thesis, i.e. capturing their role on

the local geometry and energy, and the bulk mechanical properties of nc materials.

To that end, the stationary form of kinematics, i.e. geometry, of these defects is

developed by combining the linear theory of continuously distributed defects with the

latest interpretation of incompatibilities. This theoretical framework forms the basis

for the development of the dynamic theory of continuously distributed defects in the

following chapter.
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CHAPTER III

MULTI-SCALE STATIC AND DYNAMIC FIELD THEORY

OF CONTINUOUSLY DISTRIBUTED DEFECTS

The objective of this chapter is to present the fine scale dynamic field theory of

disclinations and dislocations developed in the work of Fressengeas et al. [134] and

develop its extension to the meso-scale. In the previous chapter, expressions for com-

patible and incompatible geometric fields of a simply connected domain containing

an arbitrary continuous distribution of dislocations and disclinations are derived by

taking into account the most recent interpretation of an incompatibility. The deriva-

tion assumed that the stresses induced in the presence of defects respect equilibrium

conditions everywhere in the domain.

The chapter is organised as follows, in section 3.1, the discussion begins by de-

riving these equilibrium conditions. Using these, new elastic constitutive laws that

account for the incompatibilities are developed based on the requirements of non-

negative mechanical dissipation for a body subjected to surface tractions and surface

moments. This is followed by a discussion characterizing the proposed elastic con-

stitutive laws. An explicit expression for these laws is proposed in an isotropic case.

The elastic laws combined with the geometric fields of continuous defects from the

previous chapter form the governing equations of the static field theory of dislocations

and disclinations. A newly developed Fourier transform based solution algorithm is

presented for the static case. Then, deriving motivation from the work of Fressengeas

et al. [134], the extension to the dynamic case at fine scale is presented in section

3.3. Recalling these derivations provides a new perspective on the length scale at

which the continuum is described in the present work. This is discussed in section
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3.4. The length scale dependence of elasticity constants is also discussed along with

the interpretation of incompatibilities at the meso-scale. In section 3.5 an extension

of the fine scale dynamic field disclination and dislocation mechanics model to the

meso-scale is presented. A meso-scale averaging procedure for fine scale field vari-

ables is discussed and phenomenological expressions pertaining to this extension are

proposed. In section C, the discussion is directed towards understanding the impli-

cations, with respect to compatibility of geometric fields, of describing interfaces and

junctions formed by these interfaces using a continuous description of dislocations

and disclinations as opposed to a discrete representation.

3.1 Higher order/grade multi-scale elastic constitutive laws

In crystalline media, internal stresses are generated due to elastic displacements of

atoms from their low-energy equilibrium positions. Such deformed configurations may

result from (i) a compatible elastic deformation induced from external constraints,

and/or (ii) the presence of line crystal defects – dislocations and disclinations – induc-

ing compatible and incompatible fields of elastic strain and curvature. From causality,

these compatible and incompatible elastic strains and curvatures are related to the

internal stresses through a relationship known as an elastic constitutive law. These

elastic fields along with the internal stresses contribute to the thermodynamic state

of a material. This is measured in terms of a thermodynamic potential, known as the

Helmholtz free energy density.

For a simply connected body undergoing elastic deformation, the classical theory

of elasticity states that the Helmholtz free energy density of this system is a function

of elastic strains and their work conjugates Cauchy stresses. If elastic curvatures are

also generated in the medium, then the couple stress theory [281, 406] suggests that

these too contribute to the Helmholtz free energy. Mindlin and Tiersten [281] and

Toupin [406] define this contribution in terms of elastic curvatures and their work
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conjugate couple stresses.

3.1.1 Elastic constitutive laws for a simply connected body subjected to
tractions and moments

The procedure outlined below follows in the footsteps of Mindlin and Tiersten [281].

Consider a defect-free simply connected body of volume V and bounded by a surface

S. Let ~n be the outward unit normal to the surface. Let a traction vector (force per

unit area) ~t and moment ~m (couple per unit area) act on the surface of the body.

The body forces and couples are neglected in this discussion.

Now let this body be subjected to elastic deformation. Conservation of mass and

balance of momentum impose the following conditions:

d

dt

∫
V

ρdV = 0 (3.1)

d

dt

∫
V

~vρdV =

∫
S

~tdS (3.2)

where d/dt is the time derivative, ~v is the velocity and ρ is the mass density. Consid-

ering the equilibrium of forces and moments on an arbitrary surface in an infinitesimal

cubic volume leads to the definition of the asymmetric force σ and second order couple

M stress tensors:

~t = σ · ~n or ti = σijnj, on S (3.3)

~m = M · ~n or mi = Mijnj, on S (3.4)

Substituting (3.3) for the traction vector equation into the right hand side of (3.2)

and applying the divergence theorem (integral of the divergence of a field over the

entire volume is equal to the surface integral of the component of this field resolved

over the surface bounding this volume) gives,∫
S

~tdS =

∫
S

σ · ~ndS =

∫
V

div σdV or

∫
S

tidS =

∫
S

σijnjdS =

∫
V

σij,jdV (3.5)

Substituting this expression in the momentum balance equation (3.2) then gives∫
V

(
div σ − ρ~̇v

)
dV =

∫
V

(
∇ · σ − ρ~̇v

)
dV = 0 or

∫
V

(σij,j − ρv̇i) dV = 0 (3.6)
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Assuming that the body is stationary, the following three equilibrium equations

on force stresses are obtained,

div σ = ∇ · σ = 0 or σij,j = 0 (3.7)

In order to obtain the equilibrium equation on couple stresses, the conservation

of moment of momentum is revisited,

d

dt

∫
V

~r × ~vρdV =

∫
S

(
~r ×~t+ ~m

)
dS or

d

dt

∫
V

eijkrjvkρdV =

∫
S

(eijkrjtk +mi) dS (3.8)

Solving each term of (3.8) individually gives the following equation for the con-

servation of moment of momentum of a stationary body,∫
V

~r × div σdV +

∫
V

(divM + 2X (σ)) ρdV

=

∫
V

~r ×∇ · σdV +

∫
V

(∇ ·M + 2X (σ)) ρdV = 0 or∫
V

eijkrjσkl,ldV +

∫
V

(Mij,j − eijkσjk) ρdV = 0 (3.9)

Substituting the force stress equilibrium equation (3.7) in the above equation

provides the equilibrium equations for couple stresses,

divM + 2X (σ) = ∇ ·M + 2X (σ) = 0 or Mij,j − eijkσjk = 0 (3.10)

Decomposing the asymmetric force stress tensor into its symmetric and anti-

symmetric parts,

σ = σs + σa or σij = σsij + σaij = σ(ij) + σ[ij] (3.11)

The superscript ”s” and symmetric operation ( ) will be used interchangeably through-

out the text (similarly for ”a” and [ ]). The anti-symmetric part of the force stresses

is defined as,

σa = {X (σ)} or σaij =
1

2
eijkemnkσmn (3.12)
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Substituting (3.12) in (3.10) gives,

σa = −1

2
{divM} or σaij =

1

2
eijkMkl,l (3.13)

From the equation (3.13), the couple stresses are related to the anti-symmetric

component of the force stresses. In the absence of couple stresses, the force stresses

are equal to the symmetric Cauchy stresses and the equilibrium (3.7) needs to be

balanced only on the Cauchy stresses. However, in the presence of couple stresses,

the equilibrium equation (3.7) is satisfied by both symmetric part (Cauchy stress)

and the anti-symmetric part of the force stresses.

Equations (3.7) and (3.10) are the governing equations of the couple stress theory

[281]. In the present framework, the total displacements are the only DOFs; the rota-

tions being rigid body in nature cannot be considered as explicit DOFs. Therefore the

six equilibrium equations and the three total displacements make the combined system

of equations overdetermined. A determinate system can be obtained by combining

these equilibrium equations through the anti-symmetric part of the force stresses.

Substituting equation (3.13) into (3.7) gives,

div

(
σs − 1

2
{divM}

)
= ∇ ·

(
σs − 1

2
{∇ ·M}

)
= 0 or σsij,j +

1

2
eijkMkl,lj = 0(3.14)

Now, consider the balance of the internal energy per unit mass of the body. For

a body undergoing elastic deformation, the second law of thermodynamics requires

that the mechanical power dissipated is equal to zero i.e. the stored free energy is

equal to the external work done on surfaces

D =

∫
S

(
~v ·~t+ ~̇ω · ~m

)
dS −

∫
V

ψ̇dV = 0 or

∫
S

(viti + ω̇imi) dS −
∫
V

ψ̇dV = 0(3.15)

where D is the dissipation and ψ is the Helmholtz free energy density. From equations

(3.3) and (3.4),

D =

∫
S

(
~v · σ · ~n+ ~̇ω ·M · ~n

)
dS −

∫
V

ψ̇dV = 0 or
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D =

∫
S

(viσijnj + ω̇iMijnj) dS −
∫
V

ψ̇dV = 0 (3.16)

Applying the divergence theorem yields,

D =

∫
V

(
grad ~v : σ + ~vt · div σ + grad ~̇ω : M + ~̇ω · divM

)
dV −

∫
V

ψ̇dV

=

∫
V

(
∇~v : σ + ~vt · (∇ · σ) +∇~̇ω : M + ~̇ω · (∇ ·M )

)
dV −

∫
V

ψ̇dV = 0

or D =

∫
V

(vi,jσij + viσij,j + ˙ωi,j : Mij + ω̇iMij,j) dV −
∫
V

ψ̇dV = 0 (3.17)

Using relationship (2.39) for rotation vector and tensor, and equilibrium equations

(3.7) and (3.10) and performing some algebra gives,

D =

∫
V

(
grad ~v : σ + grad ~̇ω : M − ω̇ : σ

)
dV −

∫
V

ψ̇dV

=

∫
V

(
∇~v : σ +∇~̇ω : M − ω̇ : σ

)
dV −

∫
V

ψ̇dV = 0

or D =

∫
V

(vi,jσij + ω̇i,jMij − ω̇ijσij) dV −
∫
V

ψ̇dV = 0 (3.18)

The gradient of the velocity vector is equal to the sum of the rate of change of

total distortion with respect to time. Then recalling the definition of the distortion

as the sum of strain and rotation, the gradient of the velocity vector can be expressed

as,

grad ~v = grad u̇ = U̇ = ε̇+ ω̇ (3.19)

Decomposing the force stress tensor into symmetric and anti-symmetric compo-

nents gives the following expression for the dissipation,

D =

∫
V

(
ε̇ : σs + ω̇ : σa + grad ~̇ω : M − ω̇ : σa

)
dV −

∫
V

ψ̇dV

=

∫
V

(
ε̇ : σs + ω̇ : σa +∇~̇ω : M − ω̇ : σa

)
dV −

∫
V

ψ̇dV = 0

or D =

∫
V

(
ε̇ijσ

s
ij + ω̇ijσ

a
ij + ω̇i,jMij − ω̇ijσaij

)
dV −

∫
V

ψ̇dV = 0 (3.20)

Note that the inner (double dot) product between a symmetric and anti-symmetric

tensor is equal to zero. Therefore, in the products in equation (3.20), the symmetric
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total strain rate tensor ε̇ extracts only the symmetric part of the force stress tensor σs

(Cauchy stress tensor) and the anti-symmetric total rotation rate tensor ω̇ extracts

only the anti-symmetric part of the force stress tensor σa. The gradient of the rotation

vector is a deviatoric tensor i.e. ωi,i = 0. Therefore the gradient of rotation extracts

only the deviatoric part of the couple stresses MD. Taking the gradient of the total

rotation rate as the rate of change of the second order curvature (2.46) i.e. ω̇i,j = κ̇ij

and substituting in equation (3.20) gives

D =

∫
V

(
ε̇ : σs + κ̇ : MD

)
dV −

∫
V

ψ̇dV = 0

or D =

∫
V

(
ε̇ijσ

s
ij + κ̇ijM

D
ij

)
dV −

∫
V

ψ̇dV = 0 (3.21)

Equation (3.21) represents the balance of mechanical power dissipated for a body

in equilibrium under the action of surface tractions and moments. During elastic

deformation the defects existing in the medium are motionless; the plastic strain and

curvature rates are equal to zero. Therefore, the total strain and curvature rates are

equal to their elastic counterparts. Thus, irrespective of the presence or absence of

defects, equation (3.21) reduces to,

D =

∫
V

(
ε̇e : σs + κ̇e : MD

)
dV −

∫
V

ψ̇dV = 0

or D =

∫
V

(
ε̇eijσ

s
ij + κ̇eijM

D
ij

)
dV −

∫
V

ψ̇dV = 0 (3.22)

From here it can be deduced that the Helmholtz free energy density has contribu-

tions coming only from the elastic strain and curvature. These contributions include

both the compatible and incompatible components.

Note that by accounting for the incompatible components of elastic strain and

curvature fields, the dissipation formulation accounts for defect core contributions

to free energy of the medium without introducing singularities in the kinematic and

stress fields. This formulation is restricted at the fine-scale treatments of defects. At

the meso-scale, where inter-granular boundaries are treated as singular interfaces, the
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dissipation formulation should account for the discontinuity in kinematic fields across

the interface. This is presented in section C.1. As shall be seen in later chapters,

for the sake of simplicity of applications at meso-scale, the dissipation framework

involving interfaces is abandoned. Meso-scale elastic laws are adopted from the couple

stress theory framework [281] without an explicit dissipation formulation.

In order to satisfy the equation (3.22), the free energy density has to be a function

of elastic strain and curvature:

ψ = ψ (εe, κ̃e) or ψ = ψ
(
εeij, κ

e
ij

)
(3.23)

Differentiating equation (3.23) with respect to time gives

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂κ̃e
: ˙̃κ

e
or ψ̇ =

∂ψ

∂εeij
ε̇eij +

∂ψ

∂κije
κ̇eij (3.24)

Comparing equations (3.22) with (3.24) gives,

σs =
∂ψ

∂εe
or σij

s =
∂ψ

∂εije
(3.25)

MD =
∂ψ

∂κe
or MD

ij =
∂ψ

∂κije
(3.26)

Equations (3.25) and (3.26) represent the symmetric Cauchy components of the

force stresses and deviatoric components of the couple stresses, respectively. These

expressions from σs and MD are valid for compatible or incompatible anisotropic

simply connected bodies undergoing elastic deformation. From equilibrium equations

(3.7) and (3.10), the entire force and couple stress tensors are necessary to maintain

the equilibrium of the medium but only the symmetric Cauchy stress components

of force stresses and deviatoric components of couple stresses contribute to the free

energy density. Hence the existence of anti-symmetric force stresses and hydro-static

couple stresses does not follow from elastic constitutive laws.

Following the usual norm of the literature, constitutive laws are proposed in the

case of linear elasticity. A convex quadratic expression of the free energy density
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is adopted, similar to that in the work of Kröner [218]. Only the first and second

gradients of displacement are taken as dependent state variables for the free energy

density. The displacement itself does not enter the expression of free energy density

because a rigid body translation of the body should not affect its internal stress state.

Similarly, rigid body rotations also do not contribute to the free energy density.

First, the compatible case is considered. When a defect-free simply connected

body undergoes elastic deformation, the displacements are single valued everywhere

in the body. Equations (3.25) and (3.26) impose that only the symmetric part of the

first gradient of displacement and the anti-symmetric part of the second gradient of

displacement enter the expression of the free energy density,

ψ = ψ

(
1

2

(
grad ue‖ + gradTue‖

)
,
1

2
grad

(
grad ue‖ − gradTue‖

))
= ψ(u

e‖
(i,j), u

e‖
[i,j]k) (3.27)

Its expression is,

ψ =
1

2
u
e‖
(i,j)C(ij)(kl)u

e‖
(k,l) + u

e‖
(i,j)B(ij)[kl]mu

e‖
[k,l]m

+ u
e‖
[i,j]kD[ij]k(lm)u

e‖
(l,m) +

1

2
u
e‖
[i,j]kA[ij]k[lm]nu

e‖
[l,m]n (3.28)

In order to demonstrate the symmetries or anti-symmetries associated with the

elasticity tensors, in the following only the Einstein notation is utilized to represent

tensors of all orders. The bold-font notation will be taken up later.

The independent state variables in equation (3.28) are the second order symmetric

strain tensor and the third order anti-symmetric curvature tensor obtained using

equation (2.52). Such a choice intentionally differs from the expression proposed in

equation (3.23). As shall be seen later in this section, it allows deducing a relationship

between the third order hyper-stresses, i.e. the work conjugates of the third order

anti-symmetric second gradient of elastic displacements, and the second order couple

stresses, i.e. the work conjugates of the second order elastic curvatures.
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The symmetric elastic strain tensor and the anti-symmetric third order curvature

tensor impose symmetry and anti-symmetry conditions on the indices of the elastic-

ity tensors A,B,C and D. An elastic constant is symmetric over the indices that

are shared with elastic strain and anti-symmetric with those shared with the anti-

symmetric third order curvature tensor. The quadratic form of the free energy density

imposes additional conditions on the elasticity tensors resulting in the following sym-

metries or anti-symmetries:

C(ij)(kl) = C(ji)(kl) = C(ij)(lk) = C(kl)(ij) (3.29)

A[ij]k[lm]n = −A[ji]k[lm]n = −A[ij]k[ml]n = A[ji]k[ml]n = A[lm]n[ij]k (3.30)

B(ij)[kl]m = B(ji)[kl]m = −B(ij)[lk]m = −B(ji)[lk]m (3.31)

D[ij]k(lm) = −D[ji]k(lm) = D[ij]k(ml) = −D[ji]k(ml) (3.32)

Taking the partial derivatives of the free energy density, first with respect to the

symmetric elastic displacement gradient and second with respect to the third order

anti-symmetric second gradient of elastic displacement gives the elastic constitutive

laws on Cauchy and couple stresses, respectively,

σ(pq) =
∂ψ

∂u
e‖
(p,q)

= C(pq)(kl)u
e‖
(k,l) +B(pq)[kl]mu

e‖
[k,l]m + u

e‖
[i,j]kD[ij]k(pq) (3.33)

M̃[pq]r =
∂ψ

∂u
e‖
[p,q]r

= u
e‖
(i,j)B(ij)[pq]r +D[pq]r(lm)u

e‖
(l,m) + A[pq]r[lm]nu

e‖
[l,m]n (3.34)

The tensorial partial derivatives of the free energy density should necessarily be

taken with tensors having indices other than i, j, k, l and m. The anti-symmetric part

of the second gradient of elastic displacements u
e‖
[i,j]k is the anti-symmetric third order

elastic curvature tensor κ̃
e‖
[ij]k. Therefore the third order anti-symmetric hyper-stress

tensor can also be defined as M̃[pq]r = ∂ψ

∂κ̃
e‖
[pq]r

. Substituting equation (2.51) in this

relationship and rearranging the terms gives −epqsM̃[pq]r = ∂ψ

∂κ
e‖
sr

. On comparison with

equation (3.26) a relationship between the second order deviatoric couple stress tensor
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and the third order anti-symmetric hyper-stress tensor is established:

MD = 2X
(
M̃
)

= −X : M̃ or Mil = −eijkM̃[jk]l (3.35)

M̃ =
1

2

{
MD

}
or M̃[ij]k = −1

2
eijlMlk (3.36)

Equations (3.35) and (3.36) are consistent with the assumed relationships pro-

posed in the work of Kröner [218] and the micropolar elasticity model by Eringen

[105]. When equation (3.36) is substituted in the equilibrium equation of couple

stresses (3.10), the resulting equation corresponds to the form of equilibrium equa-

tion proposed by Eringen and Suhubi [110] where the anti-symmetric part of the third

order hyper-stress tensor is identified as the first stress moment.

In the sole presence of dislocations within the body, an additional incompatible

component of the symmetric elastic distortion contributes to the free energy density

along with the compatible elastic distortion and compatible curvature. Thus the

internal state variable in the expression for the Helmholtz free energy density corre-

sponding to the symmetric part of the gradient of the elastic displacement is replaced

by an elastic distortion having compatible and incompatible components. Further-

more, the anti-symmetric component of the second gradient of elastic displacement

remains compatible. The anti-symmetric component of the compatible gradient of

elastic displacement is defined as the anti-symmetric component of the compatible

elastic distortion. Therefore, the compatible anti-symmetric component of the second

gradient of displacement (i.e. u
e‖
i,jk) is replaced by the gradient of compatible elastic

distortion (i.e. U
e‖
[ij],k).

ψ = ψ
(
U e(‖+⊥)s,gradU e‖a

)
= ψ

(
U
e(‖+⊥)
(ij) , U

e‖
[ij],k

)
(3.37)

ψ =
1

2
U
e(‖+⊥)
(ij) C(ij)(kl)U

e(‖+⊥)
(kl) + U

e(‖+⊥)
(ij) B(ij)[kl]mU

e‖
[kl],m

+ U
e‖
[ij],kD[ij]k(lm)U

e(‖+⊥)
(lm) +

1

2
U
e‖
[ij],kA[ij]k[lm]nU

e‖
[lm],n (3.38)

This is the most general form of the quadratic free energy density of a body

containing an arbitrary distribution of dislocations. The constitutive relationships
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for the Cauchy and third order couple stresses are obtained by taking the partial

derivatives with respect to the distortion and its gradient respectively:

σ(pq) =
∂ψ

∂U
e(‖+⊥)
(pq)

= C(pq)(kl)U
e(‖+⊥)
(kl) +B(pq)[kl]mU

e‖
[kl],m + U

e‖
[ij],kD[ij]k(pq) (3.39)

M[pq]r =
∂ψ

∂U
e‖
[pq],r

= U
e(‖+⊥)
(ij) B(ij)[pq]r +D[pq]r(lm)U

e(‖+⊥)
(lm) + A[pq]r[lm]nU

e‖
[lm],n (3.40)

In the presence of both disclinations and dislocations, the curvature has an ad-

ditional incompatible component along with the compatible component. The elastic

distortion is undefined and therefore its symmetric component is replaced with the

elastic strain. The elastic strain also has contributions coming from its compatible

and incompatible components.

ψ = ψ(εe(‖+⊥)s, κ̃e(‖+⊥)a) = ψ(ε
e(‖+⊥)
(ij) , κ̃

e(‖+⊥)
[ij]k ) (3.41)

ψ =

 1

2
ε
e(‖+⊥)
(ij) C(ij)(kl)ε

e(‖+⊥)
(kl) + ε

e(‖+⊥)
(ij) B(ij)[kl]mκ̃

e(‖+⊥)
[kl]m

+κ̃
e(‖+⊥)
[ij]k D[ij]k(lm)ε

e(‖+⊥)
(lm) +

1

2
κ̃
e(‖+⊥)
[ij]k A[ij]k[lm]nκ̃

e(‖+⊥)
[lm]n

 (3.42)

The constitutive relationships are obtained from the expression (3.42) by taking

partial derivatives of the elastic energy density with respect to ε
e(‖+⊥)
(pq) and κ̃

e(‖+⊥)
[pq]r

respectively,

σ(pq) =
∂ψ

∂ε
e(‖+⊥)
(pq)

= C(pq)(kl)ε
e(‖+⊥)
(kl) +B(pq)[kl]mκ̃

e(‖+⊥)
[kl]m + κ̃

e(‖+⊥)
[ij]k D[ij]k(pq) (3.43)

M[pq]r =
∂ψ

∂κ̃
e(‖+⊥)
[pq]r

= ε
e(‖+⊥)
(ij) B(ij)[pq]r +D[pq]r(lm)ε

e(‖+⊥)
(lm) + A[pq]r[lm]nκ̃

e(‖+⊥)
[lm]n (3.44)

Comparing the expressions for the free energy density in the case when no defects,

only dislocations, and both dislocations and disclinations are present in the medium,

it can be deduced that the order of the incompatibility increases with increasing order

of the defects.

The proposed elastic laws can also be formulated in terms of 4th order elasticity

tensors. Then the third order elastic curvatures are replaced by the second order
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elastic curvatures. The derivations are shown in the appendix B.1.1. The transformed

elastic laws are:

σs = C : εe(‖+⊥) +B : κe(‖+⊥) or σ(pq) = C(pq)(kl)ε
e(‖+⊥)
(kl) +B(pq)nmκ

e(‖+⊥)
nm

MD = D : εe(‖+⊥) +A : κe(‖+⊥) or MD
sr = Dsr(nm)ε

e(‖+⊥)
nm + Asrnmκ

e(‖+⊥)
nm (3.45)

here the 4th order tensors B and D represent a combination of their 5th order coun-

terparts. The free energy density is then given as:

ψ = ψ
(
ε
e(‖+⊥)
ij , κ

e(‖+⊥)
ij

)
=ε

e(‖+⊥)
ij C(ij)(kl)ε

e(‖+⊥)
kl + ε

e(‖+⊥)
ij B(ij)klκ

e(‖+⊥)
kl

+κ
e(‖+⊥)
ij Dij(kl)ε

e(‖+⊥)
kl + κ

e(‖+⊥)
ij Aijklκ

e(‖+⊥)
kl (3.46)

From the above equation, the following relationship between 4th order elasticity

tensors B and D can be deduced:

B(ij)kl = D(kl)ij (3.47)

In the following sections, the 4th and 5th order representations of elasticity tensors

B and D will be used interchangeably without further justification.

3.1.2 Scale dependence of higher order elastic constants: non-locality

Cauchy stresses are described in units of Pascals Pa (also N/m2) and strains are

dimensionless. Therefore, the 4th order elasticity tensor C has the same units as

Cauchy stress. On the other hand, couple stresses are described in units of N/m and

curvatures in 1/m which from the constitutive equations implies that the elasticity

tensorsB, D andA are of dimensions N/m, N/m and N , respectively. The elasticity

tensorsB,D andA are more frequently defined in terms of the order of shear modulus

and a length scale l such that B = α1µl, D = α2µl and A = α3µl
2. The distance l is

the internal length scale that sets the characteristic dimension of the area over which

inhomogeneity of the elastic curvature/strains induces a significant Cauchy/couple

stress component. Kröner [218] proposed that such an inhomogeneity occurs within
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the core of the defect and therefore proposed to use l ≈ b as an estimate for the value.

The order of this estimate is in general agreement with those provided elsewhere in

the literature; for example, in a recent work [264] on non-locality in Cu, an estimate

of l = 0.5A◦ was provided. For the applications in the upcoming sections, α1, α2 and

α3 will be taken as 1 and l = b unless mentioned otherwise.

The origin of the non-locality of elasticity lies in the concurrent presence of discli-

nations and dislocations in the lattice, as implied by the definition of Burgers vector

in equation (2.107). The strong variations of the incompatible elastic curvature ten-

sor within the defected area induce incompatible elastic strains εe
′

= (κeT × ~r)T ,

which combines with the compatible and incompatible elastic strain εe arising from

the presence of dislocations. Therefore, Cauchy stress components are induced by

the variations of elastic curvature in the defect core. The corresponding length scale

must be of the order of size of the core region. Therefore, it is expected that, sym-

metrically the strong variations of the incompatible elastic strain tensor in the core

region result in elastic curvatures κe
′

= ~r × εe/r2 which along with the compatible

and incompatible elastic curvature κe contribute to couple stresses.

3.1.3 Classification of higher order/grade elastic laws

In this part, the elastic constitutive laws developed in the previous subsection are

benchmarked with respect to existing elastic constitutive laws. The latter can gener-

ally be classified into two groups: i) models based on compatible theory and ii) models

based on incompatible theory. The discussion begins with the compatible models.

One of the most widely used compatible models is the classical linear elastic-

ity model (Hooke’s law). In this framework, the mechanical response of a body is

characterized by the compatible elastic strains and their work conjugates, i.e. the

Cauchy stresses. The three elastic displacements are taken as the only DOF. Hooke’s

law is applied to study the macroscopic mechanical response of systems subjected to
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traction boundary conditions. At the macroscopic scale, defect inhomogeneities are

neglected, and deformation of the body is assumed to be compatible everywhere. The

present model reduces to the Hooke’s law in the compatible case where no defect is

present in the body and the contributions of compatible curvatures to the free energy

density are ignored.

In the Cosserat approach [80], the mechanical response is characterized by the

elastic strains and second order curvatures and their work conjugates, the Cauchy

and couple stresses, respectively. The Cosserat model was initially developed to

study the elastic response during bending of beams, torsion of shafts, etc. When

the medium is in static equilibrium, the Cosserat model corresponds to the microp-

olar elasticity model [105]. In this model, both the displacements and rotations are

taken as independent DOF. The independent rotations have a compatible component

corresponding to the rigid body rotation (the curl of the displacement) and a multi-

valued incompatible component corresponding to the local rotation of material points.

However, the Cosserat model does not account for the contributions of incompatible

elastic strains and compatible elastic curvatures to the elastic energy density. The

proposed model goes beyond the Cosserat or micropolar framework by incorporating

contributions from both the compatible and incompatible components of the elastic

strains and curvatures. In the couple stress model by Mindlin-Tiersten [281] and

Toupin [406], the rotations are taken as rigid body rotations and are thus dependent

on the displacements. Therefore, only the compatible components of elastic strain

and curvature enter the expression of the free energy density. Hence, the present

constitutive model reduces to the couple stress model [281, 406] when assuming a

defect-free body. A similar form of the free energy density having elastic strains and

third order curvature tensors as internal state variables for an infinite medium con-

taining uniformly distributed infinitely long dislocations is proposed by Kröner [218].

However, Kröners model [218] ignores the incompatibility induced in elastic strain in
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the presence of dislocations, and it is thus equivalent to the couple stress model. The

compatible strain gradient elasticity model proposed by Mindlin and Eshel [280] takes

the gradient of compatible elastic strain as an additional state variable along with

compatible elastic strain and compatible elastic curvature, and hence faces similar

shortcomings as the other compatible models in dealing with line crystal defects.

The generalized micromorphic continuum model [278, 110] postulates that each

material point is deformable and has its own finite volume as opposed to the Cosserat

model, which assumes that material points can translate or rotate without deforming

i.e. they are rigid. The material points in a micromorphic continuum are attributed

twelve independent DOF: three macro-displacements, three micro-rotations and six

micro-deformations (three micro-dilatations and three micro-shears). This model is

developed to study the mechanical response of a body containing inhomogeneities

such as inclusions. A relative strain tensor γ correlates the macro and micro strains

of the body. The compatible strains and rotations from the present model can be

related to the macro-strains and macro-rotations of the micromorphic model, and the

incompatible strains and rotations can be correlated with the micro-strains and micro-

rotations. The geometric equations derived in section 2.3.1 for a compatible body are

respected everywhere in the micromorphic medium. Incompatible or micro variables

are introduced in the presence of defects and are localized within the region where the

defect distribution is non-zero. The relative strain tensor which can be decomposed

into compatible macro-strains and incompatible micro-strains, corresponds to the

compatible and incompatible elastic strains, respectively, of the present model. A

similar correlation exists between the macro and micro curvatures in the micromorphic

model and the compatible and incompatible curvatures in the present model.

In the micromorphic framework [278, 110], the free energy density is taken as the

function of both, relative and macro strains. Such a consideration could induce redun-

dancies since the relative strain has macro-strain as one of its dependent variables.
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Table 1 [421] summarizes the constitutive laws proposed in some of the aforemen-

tioned compatible linear elasticity models in comparison with those proposed in the

present model in absence of defects.

Table 1: Free energy density and elastic laws of linear

compatible models

MODEL ELASTIC ENERGY

DENSITY

ELASTIC LAWS AND EQUILIB-

RIUM EQUATIONS

Hooke’s ψ = ψ
(
εe‖
)

= 1
2
σs : εe‖ σs = ∂ψ

∂εe‖
or σsij = ∂ψ

∂ε
e‖
ij

law or ψ = ψ
(
ε
e‖
ij

)
= 1

2
σsijε

e‖
ij div σs = ∇ · σs = 0 or σsij,j = 0

Cosserat[80] ψ = ψ
(
εe‖,κe‖

)
σs =

∂ψ(εe‖,κe‖)
∂εe‖

or σsij =
∂ψ

(
ε
e‖
ij ,κ

e‖
ij

)
∂ε

e‖
ij

Micropolar = 1
2
σs : εe‖ + 1

2
MD : κe‖ MD =

∂ψ(εe‖,κe‖)
∂κe‖ or MD

ij =
∂ψ

(
ε
e‖
ij ,κ

e‖
ij

)
∂κ

e‖
ij

model [105] or ψ = ψ
(
ε
e‖
ij , κ

e‖
ij

)
div σs = ∇ · σs = 0 or σsij,j = 0

Couple str- = 1
2
σsijε

e‖
ij + 1

2
MD

ij κ
e‖
ij divMD + 2X(σa)

ess theory The cross terms are = ∇ ·MD + 2X(σa) = 0 or

[281, 406] assumed equal to zero MD
ij,j − eijkσajk = 0

Kröners ψ = ψ
(
εe‖, κ̃e‖

)
σs =

∂ψ(εe‖,κ̃e‖)
∂εe‖

or σsij =
∂ψ

(
ε
e‖
ij ,κ̃

e‖
[ij]k

)
∂ε

e‖
ij

model [218] = 1
2
σs : εe‖ + 1

2
M̃ : κ̃e‖ M̃ =

∂ψ(εe‖,κe‖)
∂κ̃e‖ or M̃[ij]k =

∂ψ
(
ε
e‖
ij ,κ̃

e‖
[ij]k

)
∂κ̃

e‖
ijk

or ψ = ψ
(
ε
e‖
ij , κ̃

e‖
ijk

)
div σs = ∇ · σs = 0 or σsij,j = 0

= 1
2
σsijε

e‖
ij + 1

2
M̃[ij]kκ̃

e‖
[ij]k divMD + 2X(σa)

The cross terms are = ∇ ·MD + 2X(σa) = 0 or

assumed equal to zero MD
ij,j − eijkσajk = 0

Micromor- ψ = ψ
(
εe‖,γe‖, χe‖

)
σs =

∂ψ(εe‖,γe‖,χe‖)
∂εe‖

or

phic model = 1
2
σs : εe‖ + 1

2
M : χe‖ σsij =

∂ψ
(
ε
e‖
ij ,γ

e‖
ij ,χ

e‖
ijk

)
∂ε

e‖
ij

;M =
∂ψ(εe‖,γe‖,χe‖)

∂χe‖

[278, 110] +1
2
τ : γe‖ or Mijk =

∂ψ
(
ε
e‖
ij ,γ

e‖
ij ,χ

e‖
ijk

)
∂χ

e‖
ijk

;

Continued on next page
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Table 1 – Continued from previous page

MODEL ELASTIC ENERGY

DENSITY

ELASTIC LAWS AND EQUILIB-

RIUM EQUATIONS

or ψ = ψ
(
ε
e‖
ij , γ

e‖
ij , χ

e‖
ijk

)
τ =

∂ψ(εe‖,γe‖,χe‖)
∂γe‖ or

= 1
2
σsijε

e‖
ij + 1

2
τ sijγ

e‖
ij τij =

∂ψ
(
ε
e‖
ij ,γ

e‖
ij ,χ

e‖
ijk

)
∂γ

e‖
ij

+1
2
Mijkχ

e‖
ijk div (σs + τ ) = ∇ · (σs + τ ) = 0 or

The cross terms are σsij,j + τij,j = 0 ; divMD + 2X(τ a) = 0

assumed equal to zero or MD
ij,j − eijkτjk = 0

Proposed ψ = ψ
(
εe‖,κe‖

)
σs =

∂ψ(εe‖,κe‖)
∂εe‖

or

model = 1
2
σs : εe‖ σsij =

∂ψ
(
ε
e‖
ij ,κ

e‖
ij

)
∂ε

e‖
ij

without +1
2
MD : κe‖ or MD =

∂ψ(εe‖,κe‖)
∂κe‖ or

defects ψ = 1
2
σsijε

e‖
ij MD

ij =
∂ψ

(
ε
e‖
ij ,κ

e‖
ij

)
∂κ

e‖
ij

+1
2
M s

ijκ
e‖
ij div σs = ∇ · σs = 0 or σsij,j = 0

divMD + 2X(σa)

= ∇ ·MD + 2X(σa) = 0 or

MD
ij,j − eijkσajk = 0

In the class of incompatible elastic constitutive models, we can find the non-local

micropolar elasticity models [107, 108] which derive their motivation from the non-

local elasticity theories [219, 106, 109]. Recall that in non-local elasticity, the material

points undergo translational motion as in the classical elasticity case, but the Cauchy

stresses at a point depend on the elastic strains in the region near that point. The

non-local micropolar elasticity models extend this concept to include couple stresses

and curvatures. Gradient micropolar elasticity models [231, 232, 237] based on non-

local micropolar elasticity [107, 108] introduce higher gradients of the elastic strains
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and curvatures and their work conjugates in order to account for the presence of

dislocations and disclinations. Strain gradient elasticity models [163, 234, 162, 8,

233, 237] have proposed analytical solutions to the elastic strain and Cauchy stresses

in the case when dislocations [163, 234, 162, 8, 233, 237] and disclinations [233, 162]

are present in the material. In the incompatible strain gradient elasticity model

[233] incompatible elastic strains were introduced as state variables. Second order

strain gradient theory [279, 236] has been proposed whereby the elastic strain and

its first and second gradients are taken as the dependent variables. The contribution

of cross terms associated with compatible and incompatible curvatures to the stress

fields is, however, beyond the scope of these strain gradient models. An incompatible

micromorphic approach [235] was proposed where the incompatible components of

micro strain, relative strain and elastic curvature were taken as state variables. Similar

to the compatible micromorphic approach [278, 110], redundancies are introduced

while incorporating both the micro strain and the relative strain as state variables.

In yet another approach accounting for the presence of defects, defect density ten-

sors are introduced as direct state variables in the elastic laws [125, 157, 77, 158, 267,

221, 382, 230, 7]. The elastic energy is separated into contributions coming from a

compatible part (elastic strains and/or elastic curvatures) and a defect density part

(defect energy as a function of the dislocation density). In the elasto-viscoplastic

model by Forest et al. [125], geometrically necessary and statistically stored disloca-

tion densities, and kinematic hardening variables along with compatible strain and

curvature are taken as internal state variables in the expression of the elastic energy.

A similar expression of the free energy density was proposed by Gurtin [157] where

the elastic strain and geometrically necessary dislocation density are taken as internal

state variables. The micro-curl model [19] based on the micromorphic model, takes

the macro-strain, relative plastic strain and curl of the plastic micro-deformation

(which accounts for the dislocation density) as internal state variables for the free
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energy density in the presence of defects. The relative plastic strains and the curl of

the plastic micro-deformation set-up the respective micro-stresses and couple stresses.

From the definition of geometrically necessary dislocation density in equation (2.60),

the curvature and geometrically necessary dislocation density are related and thus

a redundancy is induced in considering the explicit contribution of both. Similar

arguments can be provided for the micropolar single crystal plasticity model [267],

curlHp model [159] and small strain elasto-viscoplastic framework [126]. The present

thermo-mechanically consistent framework differs fundamentally from the models in-

corporating defect densities or plastic strains as internal state variables. Table 2 [421]

summarizes some of the prominent elasticity models that account for the presence of

defects in the body. The superscripts ‖ and ⊥ are suppressed when both compatible

and incompatible components are present.

Table 2: Free energy density and elastic laws of linear

incompatible models

MODEL ELASTIC ENERGY

DENSITY

ELASTIC LAWS AND EQUILIB-

RIUM EQUATIONS

non-local ψ = ψ (γe,κe) σ∗ =
∫
V ′
β∗(r − r′)σ(r′)dV ′

micropolar = 1
2
σ∗ : γe + 1

2
M ∗ : κe M ∗ =

∫
V ′
β∗(r − r′)M(r′)dV ′

elasticity or ψ = ψ
(
γeij, κ

e
ij

)
div σ∗ = ∇ · σ∗ = 0 or σ∗ij,j = 0

[107, 108] = 1
2
σ∗ijγ

e
ij + 1

2
M∗

ijκ
e
ij divMD + 2X(σ∗)

= ∇ ·M∗ + 2X(σ∗) = 0 or

M∗
ij,j − eijkσ∗jk = 0

Gradient ψ = ψ (γe,κe,∇γe,∇κe) σ∗ =
∫
V ′
β∗(r − r′)σ(r′)dV ′

micropolar = 1
2
σ∗ : γe + 1

2
M∗ : κe M ∗ =

∫
V ′
β∗(r − r′)M(r′)dV ′

elasticity +1
2
G∗ : ∇γe + 1

2
λ∗ : ∇κe G∗ =

∫
V ′
β∗(r − r′)G(r′)dV ′

Continued on next page
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Table 2 – Continued from previous page

MODEL ELASTIC ENERGY

DENSITY

ELASTIC LAWS AND EQUILIB-

RIUM EQUATIONS

[231, 232] or ψ = 1
2
σ∗ijγ

e
ij + 1

2
M∗

ijκ
e
ij λ∗ =

∫
V ′
β∗(r − r′)λ(r′)dV ′

[237] 1
2
G∗ijkγ

e
ij,k + 1

2
λ∗ijkκ

e
ij,k div σs−div divG∗ = ∇·σs−∇·∇·G∗ =

0

or σ∗ij,j −G∗ijk,jk = 0

div (M ∗ − div λ∗) + 2X(σ∗ − divG∗)

= ∇·(M ∗−∇·λ∗)+2X(σ∗−∇·G∗) = 0

or M∗
ij,j − λ∗ijk,jk − eijk(σ∗jk −G∗jkl,l) = 0

Second ψ = ψ (εe,∇εe,∇∇εe) σs = ∂ψ(εe,grad εe,grad grad εe)
∂εe

strain = 1
2
σs : εe + 1

2
M s : ∇εe = ∂ψ(εe,∇εe,∇∇εe)

∂εe
or σsij =

∂ψ(εeij ,εeij,k,εeij,kl)
∂εeij

gradient +1
2
Y s : ∇∇εe or M s = ∂ψ(εe,grad εe,grad grad εe)

∂grad εe

elasticity ψ = 1
2
σsijε

e
ij + 1

2
M(ij)kε

e
ij,k = ∂ψ(εe,∇εe,∇∇εe)

∂grad εe
orM s

ijk =
∂ψ(εeij ,εeij,k,εeij,kl)

∂εeij,k

[236] + 1
2
M(ij)klε

e
ij,kl Y s = ∂ψ(εe,grad εe,grad grad εe)

∂grad grad εe

= ∂ψ(εe,∇εe,∇∇εe)
∂grad grad εe

orY s
ijkl =

∂ψ(εeij ,εeij,k,εeij,kl)
∂εeij,kl

div (σs − divM s − div div Y s)

= ∇ · (σs −∇ ·M s −∇ · ∇ · Y s) = 0

or σsij,j −M s
ijk,jk − Y s

ijkl,jkl− = 0

Gradient ψ = ψ
(
εe‖
)

+ ψ (α) σs =
∂ψ(εe‖)
∂εe‖

or σsij =
∂ψ

(
ε
e‖
ij

)
∂ε

e‖
ij

plasticity = 1
2
σs : εe‖ + T α : α T α = ∂ψ(α)

∂α
= tα�s

α⊗ sα + tα`l
α⊗ sα +K

model [157] or ψ = 1
2
σsijε

e‖
ij + Tαijαij or Tα = tα�s

α
i s

α
j + tα`l

α
i s

α
j +Kij

div σs = ∇ · σs = 0 or σij,j = 0

Elasto- ψ = ψ
(
εe‖,κe‖

)
σs =

∂ψ(εe‖)
∂εe‖

or σsij =
∂ψ

(
ε
e‖
ij

)
∂ε

e‖
ij

viscoplastic +ψ (α, ρsS, ρ
s
G) = 1

2
σs : εe‖ T α = ∂ψ(α)

∂α
= tα�s

α⊗ sα + tα`l
α⊗ sα +K

Cosserat +T α : α+ rslρsS + rslGρ
s
G or Tα = tα�s

α
i s

α
j + tα`l

α
i s

α
j +Kij

Continued on next page
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Table 2 – Continued from previous page

MODEL ELASTIC ENERGY

DENSITY

ELASTIC LAWS AND EQUILIB-

RIUM EQUATIONS

model [125] or ψ = 1
2
σsijε

e‖
ij + Tαijαij rsl =

∂ψ(ρsS)

∂ρsS
; rslG =

∂ψ(ρsG)

∂ρsG
;χsl = ∂ψ(αs)

∂αs

+rslρsS + rslGρ
s
G div σs = ∇ · σs = 0 or σij,j = 0

divMD + 2X(σa)

= ∇ ·MD + 2X(σa) = 0 or

MD
ij,j − eijkσajk = 0

Micro- ψ = ψ
(
εe‖, εp,Ko

)
σs =

∂ψ(εe‖)
∂εe‖

or σsij =
∂ψ

(
ε
e‖
ij

)
∂ε

e‖
ij

curl model = 1
2
σs : εe‖ + 1

2
Hφε

p : εp s = Hφε
p or sij = Hφε

p
ij

[19] +1
2
AKo : Ko M o = AK or Mo

ij = AKij

or ψ = 1
2
σsijε

e‖
ij + Tαijαij div σs = ∇ · σs = 0 or σij,j = 0

+rslρsS + rslGρ
s
G curlM o +s = 0 or ejklMil,k +sij = 0

Proposed ψ = ψ
(
εe(‖+⊥),κe(‖+⊥)

)
σs =

∂ψ(εe(‖+⊥),κe(‖+⊥))
∂εe(‖+⊥) or

model = 1
2
σs : εe(‖+⊥) σsij =

∂ψ
(
ε
e(‖+⊥)
ij ,κ

e(‖+⊥)
ij

)
∂ε

e(‖+⊥)
ij

with +1
2
MD : κe(‖+⊥) or MD =

∂ψ(εe(‖+⊥),κe(‖+⊥))
∂κe(‖+⊥) or

disclinations ψ = 1
2
σsijε

e(‖+⊥)
ij MD

ij =
∂ψ

(
ε
e(‖+⊥)
ij ,κ

e(‖+⊥)
ij

)
∂κ

e(‖+⊥)
ij

+1
2
M s

ijκ
e(‖+⊥)
ij div σs = ∇ · σs = 0 or σsij,j = 0

divMD + 2X(σa)

= ∇ ·MD + 2X(σa) = 0 or

MD
ij,j − eijkσajk = 0

Similar to the couple stress [281] and micropolar model [105], the present model

allows for the prescription of moments and rotations along with the tractions and

117



displacements on the surface of a body. In addition, higher order Dirichlet and Neu-

mann boundary conditions can be prescribed on the surface. The present formulation

deals with standard boundary conditions which are easier to prescribe as compared

to non-standard boundary conditions, such as dislocation slip rates [157].

Therefore, the elastic laws presented in this work can be classified as higher order

and higher grade. Note that the higher order here does not hold the same interpreta-

tion as that proposed in the work of Forest and Sievert [127] where the order is related

to the DOF associated with the medium i.e. classical or couple stress continuum (3),

Cosserat or micropolar continuum (6) and micromorphic medium (6). The higher or-

der is with respect to the incompatible components of elastic and plastic distortions,

strains and curvatures which are not considered in the traditional couple stress theory

of Mindlin and Tiersten [281]. In the present work, classification with respect to DOF

is deemed as a rank based classification and in that context the present model has

the same rank as the couple stress continuum. The governing equilibrium equations

of the medium are the same as the couple stress theory. The proposed elastic laws are

higher grade with respect to the gradients of displacement that can be prescribed; in

the present work these are limited to the second derivative of displacement.

3.1.4 Isotropic case - elasticity tensors and constitutive relationships

In the following, the focus is on the mathematical formulation of the elastic consti-

tutive laws in the special case of isotropy. Such laws have also been proposed in the

work of Lazar [230]. The ensuing study is performed on a body subjected to surface

tractions and moments. First, the expressions of elasticity tensors A, B, C and D

are developed in an isotropic case. Then, the final expressions of the elastic laws for

compatible and incompatible deformation of an isotropic body containing dislocations

and disclinations are derived.

An isotropic tensor is defined as a tensor which has the same components in all
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orthogonally rotated coordinate systems [230, 364, 226]. A general nth order elasticity

tensor has 3n non-zero independent terms. However, in the isotropic case there is a

significant reduction in the number of non-zero independent terms because of the var-

ious associated symmetries. The procedure to obtain an expression for an nth order

isotropic tensor presented in the work of Suiker and Chang [385] is briefly reviewed

here. These authors begin by first defining a formal orthogonal invariant polyno-

mial function [192]. A homogeneous polynomial function T
(
u(1),u(2), ...,u(N)

)
of N

vectors u(N) with N > 1, has a formal orthogonal invariant form when it can be ex-

pressed as a linear combination of the independent basic invariants of the orthogonal

group consisting of the scalar products u(i).u(j) and det
[
u(i)u(j)...u(k)

]
. The even

formal orthogonal invariant polynomial functions can be expressed as a combination

of scalar products, and the odd formal orthogonal invariant polynomial functions as

the sum of det
[
u(p)u(q)...u(r)

]
T ∗ terms, where the vectors u(p),u(q), ...,u(r) belong

to the vector space u(1),u(2), ...,u(N) , and T ∗ is an even formal orthogonal invariant.

In an orthogonal coordinate system the scalar product is the Kronecker delta δij

δij = u(i) · u(j) (3.48)

and the det
[
u(i)u(j)...u(m)

]
= eij...ku

(1)
i u

(2)
j ...u

(m)
k where, eij...k is the permutation

tensor defined as,

eij...k =


+1 if ij...k is an even permutation of 1,2, ...,m

−1 if ij...k is not an even permutation of 1,2, ...,m

0 otherwise


(3.49)

Suiker and Chang [385] prove that the isotropy of a tensor is a necessary and

sufficient condition for it to be expressed in terms of a formal orthogonal invariant

polynomial function:

T (u(1),u(2), ...,u(N)) = Tij...ku
(1)
i u

(2)
j ...u

(N)
k (3.50)
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where Tij...k is constructed solely from δij and eij...k for the odd and even isotropic

tensors.

In the literature, sometimes along with isotropy an additional symmetry is im-

posed on the elasticity tensors in the form of centro-symmetry. A material is centro-

symmetric when there exists an inversion center in the crystal such that for every

point (x, y, z) in a unit cell there exists an indistinguishable point (−x,−y,−z).

In what follows the expressions of the free energy density components for a simply

connected body undergoing elastic deformation are presented in an isotropic case,

and where pertinent with an additional assumption of centro-symmetry. The physical

implications of centro-symmetry shall be highlighted in the ensuing discussion. The

expression for the 4th order isotropic tensor C is re-developed using the methodology

proposed by Suiker and Chang [385]. The expressions for the 5th order and 6th order

isotropic tensors have been presented in other works [230, 192] and are derived in

Appendix B.

3.1.4.1 Free energy density contributions coming from terms with 4th order elas-
ticity tensors

From equations (3.28), (3.38), and (3.42), the only 4th order tensor elasticity tensor

contributing to the free energy density is Cijkl, associated with the elastic strains and

the Cauchy stresses. In the most general case, Cijkl has 34 = 81 non-zero coefficients.

In the isotropic case, these reduce to just three independent non-zero coefficients.

Following the discussion at the beginning of this section, the relationship between

the isotropic tensor Cijkl and the formal orthogonal invariant polynomial function

C
(
u(1),u(2),u(3),u(4)

)
associated with vectors u(1), u(2), u(3), u(4) is,

C
(
u(1),u(2),u(3),u(4)

)
= Cijklu

(1)
i u

(2)
j u

(3)
k u

(4)
l (3.51)

120



The 4th ordered function C
(
u(1),u(2),u(3),u(4)

)
can be written as a linear com-

bination of the independent basic invariants [385] as;

C
(
u(1),u(2),u(3),u(4)

)
= C1u

(1) · u(2)u(3) · u(4) +C2u
(1) · u(3)u(2) · u(4)

+ C3u
(1) · u(4)u(2) · u(3) (3.52)

which from equations (3.48) and (3.50) gives,

Cijkl = C1δijδkl + C2δikδjl + C3δilδjk (3.53)

The elasticity tensor C is decomposed into symmetric and anti-symmetric parts

with respect to indices ij and kl,

Cijkl = C(ij)(kl) + C(ij)[kl] + C[ij](kl) + C[ij](kl) (3.54)

From the symmetries of the quadratic expression of the free energy density for a

defect free (3.28), dislocated (3.38) and both dislocated and disclinated (3.42) crystal,

the only component of C which contributes to the elastic energy is C(ij)(kl). Using this

symmetry over the indices ij and kl, the three independent coefficients in equation

(3.53) reduce to only two independent coefficients

Cijkl = C1δijδkl + C2(δikδjl + δilδjk) (3.55)

The constants C1 and C2 are identified as the Lamé constants λ and G, respectively.

In the absence of defects, the compatible component of the elastic strain can

be defined as the symmetric part of the gradient of elastic displacement. In the

presence of dislocations, the elastic strain is defined as the symmetric component of

the compatible and incompatible elastic distortion. Therefore, the expression of the

free energy density for a defect-free or defected body undergoing elastic deformation

is given by

1

2
εe : C : εe =

λ

2
(Tr (εe))2 +Gεe : εe or

1

2
εeijC(ij)(kl)ε

e
kl =

λ

2
(εekk)

2 +Gεeijε
e
ij (3.56)
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3.1.4.2 Free energy density contributions coming from terms with 5th order elas-
ticity tensors

The expression of the 5th order isotropic tensor Bijklm is given by equation (B.3).

The symmetry of the elastic strain tensor and anti-symmetry of the third order cur-

vature tensor associated with Bijklm impose the symmetry and anti-symmetry on the

indices ij and kl respectively. The symmetries on the indices are obtained from equa-

tion (3.31) as B(ij)[kl]m. Using the expression for isotropic tensor B(ij)[kl]m from the

appendix gives:

B(ij)[kl]m =
1

4


B
′

1 (eiklδjm + ejklδim)

+B
′

2 (eikmδjl − eilmδjk + ejkmδil − ejlmδik)

+B
′

3eklmδij

 (3.57)

Recalling from equation (3.57), the anti-symmetric component of the second gra-

dient of the compatible elastic displacements is the compatible third order anti-

symmetric elastic curvature tensor. In the sole presence of dislocations, the latter

is defined as the gradient of the compatible elastic rotation. In the presence of both

dislocations and disclinations, the third order anti-symmetric elastic curvature has an

additional incompatible component. The term involving B in the expression of the

free energy density of a defect-free or defected body is,

εeijB(ij)[kl]mκ̃
e
[kl]m =

1

4



B
′

1

(
eiklε

e
ijκ̃

e
[kl]j + ejklε

e
ijκ̃

e
[kl]i

)
+B

′

2(eikmε
e
ijκ̃

e
[kj]m − eilmεeijκ̃e[jl]m

+ejkmε
e
ijκ̃

e
[ki]m − ejlmεeijκ̃e[il]m)

+B
′

3eklmε
e
iiκ̃

e
[kl]m


(3.58)

After substituting the second order elastic curvature tensor for the third order

anti-symmetric elastic curvature tensor by using equation (2.52) and performing some

algebra, the simplified expression reads:

εeijB(ij)[kl]mκ̃
e
[kl]m =

1

4

(
−4B

′

1ε
e
ijκ

e
ij − 4B

′

2

(
εeijκ

e
ij − εeiiκejj

)
− 2B

′

3ε
e
iiκ

e
jj

)
(3.59)
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From the equation of dissipation (3.22), the second order curvature tensor is de-

viatoric. Therefore its trace is equal to zero. Taking B1 = −
(
B
′
1 +B

′
2

)
, the final

expression of equation (3.58) is given as

εeijB(ij)[kl]mκ̃
e
[kl]m = B1ε

e
ijκ

e
ij = B1ε

e : κe (3.60)

Hence, an independent elastic constant couples the elastic strains and second order

elastic curvature in the free energy density term associated with elasticity tensor B.

Similar to tensor B, the symmetries associated with the indices of tensor D are

expressed in equation (B.17) in the Appendix. The term associated with D that

contributes to the free energy density can be computed in a similar way to give the

following expression

κ̃e[ij]kD[ij]k(lm)ε
e
lm = D1κ

e
ijε

e
ij = D1κ

e : εe (3.61)

In this contribution, the symmetric elastic strains extract the symmetric part of

the asymmetric second order curvature tensor. Of course, the contributions from the

cross terms (3.60) and (3.61) are the same, under the condition that the coefficients

are equal. Similar expressions for cross-terms have been proposed in the work of

Lazar [230].

For the isotropic centro-symmetric case the tensors B and D have an additional

symmetry imposed on their indices: Bijklm = Blmkij and Dijklm = Dlmkij. Substitut-

ing this in equation (3.57) reveals that Bijklm, Dijklm = 0 i.e. the cross term has no

contribution to the stresses or the energy in those parts of the material where centro-

symmetry is respected. This is in accordance with the work of Kröner [218], Mindlin

[278] and Forest et al. [125]. It highlights a very important result i.e. the cross terms

extract only the incompatible components of the elastic strain and curvature. The

presence or absence of the contribution of tensors B and D are directly associated

with the presence or absence of defects in the medium. The cross term contribution
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can therefore be rewritten as,

εeijB(ij)[kl]mκ̃
e
[kl]m = B1ε

e⊥
ij κ̃

e⊥
ij = B1ε

e⊥ : κ̃e⊥ (3.62)

κ̃e[ij]kD[ij]k(lm)ε
e
lm = D1κ̃

e
ijε

e
ij = D1κ̃

e⊥ : εe⊥ (3.63)

3.1.4.3 Free energy density contributions coming from terms with 6th order elas-
ticity tensors

Using the expression of the 6th order isotropic elasticity tensor Aijklmn and its asso-

ciated anti-symmetries from equation (B.26),

A[ij]k[lm]n = A
′

1 (δilδjkδmn + δikδjmδnl − δikδjlδnm − δimδjkδln)

+ A
′

2 (δilδjnδkm + δinδjmδkl − δimδjnδkl − δinδjlδkm)

+ A
′

3 (δilδjmδkn − δimδjlδkn)

(3.64)

The expression of tensor A in equation (3.64) corresponds to the 6th elastic tensor

in the work of Lazar, M [230]. Adopting similar arguments from the previous section

and taking the third order anti-symmetric elastic curvatures as components of the

free energy density term associated with A gives the following expression:

1

2
κ̃e[ij]kA[ij]k[lm]nκ̃

e
[lm]n

=
1

2


A
′

1

(
κ̃e[ij]jκ̃

e
[im]m + κ̃e[ij]iκ̃

e
[lj]l − κ̃e[ij]iκ̃e[jm]m − κ̃e[ij]jκ̃e[li]l

)
+A

′

2

(
κ̃e[ij]kκ̃

e
[ik]j + κ̃e[ij]kκ̃

e
[kj]i − κ̃e[ij]kκ̃e[ki]j − κ̃e[ij]kκ̃e[jk]i

)
+A

′

3

(
κ̃e[ij]kκ̃

e
[ij]k − κ̃e[ij]kκ̃e[ji]k

)

 (3.65)

Substituting the second order elastic curvature tensor for the third order anti-

symmetric elastic curvature tensor by using equation (2.52) and performing some

algebra gives the final expression,

1

2
κ̃e[ij]kA[ij]k[lm]nκ̃

e
[lm]n =

1

2

(
A1κ

e
ijκ

e
ij − A2κ

e
jiκ

e
ij

)
(3.66)

where A1 =
(
4A

′
1 + 4A

′
2 + 2A

′
3

)
and A2 = 4A

′
1. The curvatures are compatible in

the absence of disclinations. In the presence of both disclinations and dislocations,
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an additional incompatible component contributes to the free energy density and the

couple stresses. Notice that the 6th order elasticity tensor is non-vanishing in an

isotropic centro-symmetric case.

3.1.4.4 Elastic laws

The general form of the free energy density of a defect-free, dislocated or both dis-

located and disclinated body undergoing elastic deformation reduces to the following

form in an isotropic case,

ψ =
1

2
εe : C : εe + εe⊥ : B : κ̃e⊥ + κ̃e⊥ : D : εe⊥ +

1

2
κ̃e : A : κ̃e

=
λ

2
(Tr (εe))2 +Gεe : εe + (B1 +D1)εe⊥ : κe⊥ +

1

2

(
A1κ

e : κe − A2κ
eT : κe

)
or

ψ =
1

2
εeijC(ij)(kl)ε

e
kl + εeijB(ij)[kl]mκ̃

e
[kl]m + κ̃e[ij]kD[ij]k(lm)ε

e
(lm) +

1

2
κ̃e[ij]kA[ij]k[lm]nκ̃

e
[lm]n

=
λ

2
(εekk)

2 +Gεeijε
e
ij + (B1 +D1)εe⊥ij κ

e⊥
ij +

1

2

(
A1κ

e
ijκ

e
ij − A2κ

e
jiκ

e
ij

)
(3.67)

The cross terms show an interesting coupling between the symmetric elastic strain

and the deviatoric second order elastic curvature. The symmetric elastic strain can

be orthogonally decomposed into hydrostatic and deviatoric components as
(
εe⊥
)s

=((
εe⊥
)s)H

+
((
εe⊥
)s)D

. Similarly, the deviatoric second order elastic curvature can be

orthogonally decomposed into symmetric and anti-symmetric components as
(
κe⊥

)D
=((

κe⊥
)D)s

+
((
κe⊥

)D)a
. The inner product between hydrostatic and deviatoric ten-

sors vanishes. Also, the inner product between symmetric and anti-symmetric tensors

is also equal to zero. Hence the only components of the elastic strain and curvature

that can be extracted from the cross-terms are
((
εe⊥
)s)D

:
((
κ̃e⊥

)D)s
. Finally taking

E1 = B1 +D1, the expression of the free energy density reads as:

ψ =
λ

2
(Tr (εes))2 +Gεes⊥ : εes + E1ε

es⊥ : κeD⊥ +
1

2

(
A1κ

eD : κeD − A2κ
eTD : κeD

)
or

=
λ

2
(εeskk)

2 +Gεesij ε
es
ij + E1κ

eD⊥
ij εes⊥ij +

1

2

(
A1κ

eD
ij κ

eD
ij − A2κ

eD
ji κ

eD
ij

)
(3.68)

The Cauchy and couple stresses are derived from the elastic energy density by

taking the partial derivatives with respect to elastic strain and second order elastic
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curvature,

σs = λTr(εe)sI + 2G(εe)s + E1

((
κe⊥

)D)s
(3.69)

MD = E1

((
εe⊥
)s)D

+ A1(κe)D − A2

(
κeT
)D

(3.70)

The contribution from the cross terms is consistent with the symmetry of the

Cauchy stresses and the deviatoric nature of the couple stresses. Only one indepen-

dent non-zero elastic coefficient couples the elastic strains and curvatures and enters

the expression of both Cauchy and couple stresses. Along with λ and G, three inde-

pendent elastic coefficients A1, A2 and E1 contribute to the free energy density. In the

isotropic centro-symmetric case, the present model conforms to the micropolar model

by Lubarda [257]. In this case, the couple stress tensor becomes anti-symmetric by

assuming A1 = A2. Such a form of the couple stresses is presented in the work of

Hadjesfandiari and Dargush [169]. Table 3 [421] lists some of the models that have

proposed the expressions of elastic energy in an isotropic case.

Table 3: Isotropic elastic laws for compatible and incom-

patible media

MODEL ISOTROPIC ELASTIC LAWS

Hooke’s law σs = λTr(εe‖s)I + 2G(εe‖s) or σsij = λε
e‖s
kk + 2Gε

e‖s
ij

Kröner’s model σs = λTr(εe‖s)I + 2G(εe‖s) or σsij = λε
e‖s
kk + 2Gε

e‖s
ij

[218] MD = αTr(K)I + 2β(K) + 2γ(K)T or

MD
ij = αKkk + 2βKij + 2γKji

Couple stress σs = λTr(εe‖s)I + 2G(εe‖s) or σsij = λε
e‖s
kk + 2Gε

e‖s
ij

model [281] MD = 4α(κe‖D) + 2β(κe‖D)T or MD
ij = 4ακ

e‖D
ij + 4βκ

e‖D
ji

Cosserat model σ = λTr(εe‖)I + 2G(εe‖s) + 2Gc(ε
e‖a) or

Forest [124] σsij = λε
e‖s
kk + 2Gε

e‖s
ij

Continued on next page
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Table 3 – Continued from previous page

MODEL ELASTIC LAWS AND EQUILIBRIUM EQUA-

TIONS

M = αTr(κe‖)I + 2β(κe‖s) + 2γ(κe‖a) or

Mij = ακ
e‖
kk + 2βκ

e‖s
ij + 2γκ

e‖a
ij

Micropolar σs = λTr(εe‖s)I + 2G(εe‖s) or σsij = λε
e‖s
kk + 2Gε

e‖s
ij

model [257] MD = 4α(κe⊥D) + 2β(κe⊥D)T or MD
ij = 4ακe⊥Dij + 4βκe⊥Dji

Proposed σs = λTr(εe(‖+⊥)s)I + 2G(εe(‖+⊥)s) + E1(κe⊥D) or

model σsij = λε
e(‖+⊥)s
kk + 2Gε

e(‖+⊥)s
ij + E1(κe⊥Dij )

with MD = E1(εe⊥s) + A1(κe(‖+⊥)D)− A2(κe(‖+⊥)D)T or

disclinations MD
ij = E1(εe⊥sij ) + A1(κ

e(‖+⊥)D
ij )− A2(κ

e(‖+⊥)D
ji )T

3.1.4.5 Discussion - Isotropy, centro-symmetry and elasticity tensors

In the model by Kröner [218], couple stresses are defined as functions of Nye’s curva-

ture tensor which is related to the transpose of the dislocation density tensor and its

trace via the equation (2.74). Forming the trace of the dislocation density tensor from

equation (2.68) and substituting in equation (2.74) gives the relationship between the

contortion tensor, and elastic curvature and strain tensors as K = κe − (curl εe)T .

The elastic strain is symmetric and hence the trace of its curl is equal to zero. More-

over, the second order elastic curvature is deviatoric. Hence the trace of the contortion

tensor in the equation of couple stresses in Kröner’s model [218] in table 3 vanishes.

The couple stresses are thus deviatoric in nature and also have a contribution coming

from the deviatoric symmetric elastic strains. In the Cosserat model proposed by

Forest [124], the rotation is independent of the displacement. Therefore the trace of

the rotation tensor may not necessarily be equal to zero. Thus, a non-zero hydro-

static component of the second order elastic curvature is introduced in the expression
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of the couple stresses. This feature contradicts the condition imposed by mechanical

dissipation on the couple stresses that only the deviatoric component of the latter

enters the expression of free energy density.

Another main difference between the proposed model and the other models listed

in table 3 arises in the treatment of isotropy. Most of these models propose elastic

laws in an isotropic centro-symmetric case. This is perhaps to apply these models

to the most commonly known and widely used isotropic centro-symmetric materials

which are cubic crystals, particularly face centered cubic and body centered cubic. As

shown earlier in this section, centro-symmetry is related to the presence or absence

of defects in the body. In presence of line crystal defects, large distortions induced in

the vicinity of the defect could result in the breaking of centro-symmetry within the

defect core.

Materials that are isotropic but do not possess centro-symmetry are classified as

hemitropic, chiral, acentric or non-centro-symmetric materials [230, 364, 226]. Chi-

rality, or non-centrosymemtry, is a characteristic of complex material systems such as

bones, composites with helical or screw shaped inclusions [226]. In classical elasticity,

chirality does not affect the elastic properties of a material. This is mainly due to the

fact that in classical elasticity the stress is related to the strain by a 4th order tensor

which is invariant to inversion. In fact, all even ordered tensors remain unaffected by

chirality. On the other hand, odd ranked tensors vanish if there is centro-symmetry

[281, 278]. They, however, have a non-zero contribution if there is chirality. Higher

order higher grade models including the proposed model are capable of dealing with

such symmetries.

Elastic constants of a material are dependent on the interatomic cohesive energy.

The latter is the energy required to disassemble a crystal into its constituent parts

i.e. atoms. This energy has a contribution coming from an attractive force in the

event that the distance between two atoms is larger than the equilibrium interatomic
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distance and a repulsive force in the event that the distance becomes smaller than

the equilibrium interatomic distance. In the vicinity of a line crystal defect, the in-

teratomic distances, and hence cohesive forces, are different from those corresponding

to equilibrium interatomic spacing of the medium. This creates a local change in the

elastic properties of the material. Thus, similar to the inclusions in composites, the

defects act as inhomogeneities in an otherwise uniform crystalline matrix. A change

in elastic moduli of the bulk material was observed in the study of superlattices of

<001>twist GBs by Wolf and Lutsko [462] and Wolf and Kluge [461]. They found

that in the vicinity of the GBs the elastic moduli (especially the Youngs modulus and

shear modulus) were strongly influenced by the GB structure. While considering the

local effect of defects on elastic constants in a linear model would not seem tractable,

in a purely mathematical formulation, introducing higher order elastic constants may

facilitate the capture of some, if not all, of these local effects.

However, determining the higher (5th and 6th) order material constants is not

straightforward. The difficulty particularly arises when incompatibilities are induced

in the curvature. Atomistic computations have been performed to obtain the higher

order elastic constants in the case of single crystal and polycrystalline Cu [99], β-tin

[266] and dysprosium [372]. Ultrasonic testing has been used where the dependence of

ultrasonic wave velocity on the stresses in materials is utilized to extract the higher

order elastic compliance constants from an Aluminium alloy A5052 [202]. These

methods are, however, restricted to the specific case where the elastic energy density

is a function of just the strain (or stress in the ultrasonic case). To the author’s

knowledge, higher order elastics constants associated with the elastic curvature are

yet to be determined. The atomistic [99, 266, 372] and ultrasonic [202] techniques

have shown promising results and may prove useful in tackling this problem. For the

moment, however, there appears to be no clear route to experimentally validate the

model.
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3.2 Fine scale static field theory of disclinations and dis-
locations

The higher order elastic constitutive laws proposed in the previous section together

with the geometric incompatible theory of defects presented in the previous chapter

constitute the state of the art of field theory of disclination and dislocation statics.

In this section, a historical perspective leading to the development of this theory is

presented along with the governing equations.

3.2.1 Governing equations

The static field theory of disclinations and dislocations can trace its roots back to the

non-linear elastic theory of continuously distributed dislocations (ECDD) [456]. The

approach involves first laying down the equations for elastic distortions generated in

the material in presence of a continuous distribution of dislocations and then con-

nected them with non-linear and anisotropic elasticity to obtain the Cauchy stresses.

The expression for distortions obtained was similar to the work of Mura [288] (please

refer to equation (2.60)), however the procedure to obtain stresses was fundamentally

different. Mura [288], who solved a dynamic problem without body forces, extended

the stationary formulation of Burgers [54] by employing a time dependent Green’s

function to obtain the stress field of a single moving dislocation and then to obtain

the result for a continuous distribution of dislocations by superposition. On the other

hand, Willis [456], for the stationary case, proposed to solve the field equations asso-

ciated with the continuous distribution of dislocations. The methodology adopted by

Willis gives a direct solution to the stress field of a crystal containing a continuous

distribution of dislocations rather than being deduced from superposition as in the

work of Mura [288].

Acharya [2] however argued that the ECDD framework is not sufficient to obtain

a unique solution for the stress state. As seen in the discussion at the end of the
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previous chapter, the argument of Acharya was that solving the field equation for

dislocation density, the plastic distortion can be uniquely obtained only up to a gra-

dient of the vector field. Acharya proposed to prescribe the null-space component

i.e. the compatible plastic strain U p‖ by associating it with the classical plastic slip

tensor. In order to account for the contribution of incompatible elastic distortions,

Acharya [2] proposed an extension to the classical Hooke’s law by incorporating both

compatible and incompatible components of the elastic distortion into the equation.

If curvature incompatibilities are taken into account then the extended ECDD model

can be generalized to a static theory of field dislocations and disclinations. The

governing equations of the static theory of field dislocations and disclinations are:

curl κp⊥ = ∇× κp⊥ = −θ or ejklκ
p⊥
il,k = −θij

curl εp⊥ + tr(κp(‖+⊥))I − κe(‖+⊥)T = ∇× εp⊥ + tr(κp(‖+⊥))I − κe(‖+⊥)T = α or

ejklε
p⊥
il,k + κ

p(‖+⊥)
kk δij − κp(‖+⊥)

ji = −αij

div

(
σs − 1

2
{divM}

)
= ∇ ·

(
σs − 1

2
{∇ ·M}

)
= 0 or σsij,j +

1

2
eijkMkl,lj = 0

σ(pq) = C(pq)(kl)ε
e(‖+⊥)
(kl) +B(pq)[kl]mκ

e(‖+⊥)
[kl]m + κ

e(‖+⊥)
[ij]k D[ij]k(pq)

M[pq]r = ε
e(‖+⊥)
(ij) B(ij)[pq]r +D[pq]r(lm)ε

e(‖+⊥)
(lm) + A[pq]r[lm]nκ

e(‖+⊥)
[lm]n

~t = σ · ~n or ti = σijnj, on S

~m = M · ~n or mi = Mijnj, on S

~u(~x) = ~u, on S (3.71)

The field disclination and dislocation statics problem involves finding the com-

patible elastic strain and curvature fields and Cauchy and couple stresses associated

with a given dislocation and disclination density fields.
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3.3 Fine scale dynamic field theory of disclinations and
dislocations

This section presents the fine scale field disclination and dislocation mechanics model

(FDDM) proposed in the work of Fressengeas et al. [134]. The equations for statics

presented in the previous section are extended to the dynamic case to obtain the

FDDM model with a slight modification. In that, a disclination source term is added

to account for the generation/annihilation of disclinations. In the absence of the

source term, the proposed equations are exactly the same as presented in the work of

Fressengeas et al. [134].

3.3.1 Governing equations

Consider a material surface S with normal ~n and bounded by a closed curve C.

Let fα and fθ be the dislocation and disclination fluxes that measure the rate of

inflow of dislocations and disclination lines, respectively, into S. Let the dislocations

and disclinations with Burgers ~b and Frank’s vector ~Ω, respectively, comprise of a

line element dx on the curve C. Focusing first on the disclinations, let ~V θ be their

velocity and ~ξ be their line direction. The disclination density tensor is then given

as θ = ~Ω × ~ξ. If kθ represents the source term for disclination generation then the

conservation of the Frank’s vector dictates that the rate of change of the Frank’s

vector of all disclination lines threading the surface S be equal to the sum of the

total disclination flux across curve C and the disclination source term,

d

dt

∫
S

θ · ~ndS =

∫
C

fθ · dx+

∫
S

kθ · ~ndS or

d

dt

∫
S

θij · njdS =

∫
C

f θij · dxj +

∫
S

kθij · njdS (3.72)

Using Stokes’ theorem, the following expression for the rate of disclination density

evolution is obtained,

θ̇ = curl fθ + kθ = ∇× fθ + kθ or θij = ejklf
θ
il,k + kθij (3.73)
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The rate of inflow of Frank’s vector across the surface dS = ~ξ × dx is given as,

f · dx = ~Ω(~V θ · dS) or fijdxj = ΩiV
θ
k dSk (3.74)

Substituting for dS gives,

f · dx = ~Ω(~V θ · ~ξ × dx) or fijdxj = ΩiV
θ
k eklmlldxm

= ~Ω(~V θ × ~ξ · dx) or fijdxj = ΩiemklV
θ
k lldxm

= (~Ω⊗ ~V θ × ~ξ) · dx or fijdxj = |~Ω|emklV θ
k llei ⊗ em|dx|

= −(~Ω⊗ ~ξ × ~V θ) · dx or fij = −|~Ω|emlkV θ
k llei ⊗ ej|dx| (3.75)

Recalling that θ = ~Ω× ~ξ and substituting it in equation (3.75) gives,

f = −θ × ~V θ or fij = ejklθikV
θ
l (3.76)

Then the local polar disclination density evolution is given by,

θ̇ = −curl (θ × ~V θ) + kθ = −∇× (θ × ~V θ) + kθ or

θ̇ij = −ejklelmn
(
θimV

θ
n

)
,k

+ kθij (3.77)

Comparing equation (3.77) with the time derivative of equation (2.97) reveals that

the plastic curvature rate is given by,

κ̇p = θ × ~V θ or κ̇pij = ejklθikV
θ
l (3.78)

Compatible plastic curvatures κp‖ are developed during the transport of defects.

These accumulate to form the plastic curvature history in the material [134].

Equation (3.77) is the transport equation on disclination density. Its geometric

meaning is that the incompatible component of plastic curvature κ̇p⊥ incrementally

contributes to the disclination density along with other possible sources or sinks. The

same expression without the source term is proposed in the work of Mura [289] but

the formulation does not distinguish between the compatible and incompatible com-

ponents and relates the disclination density tensor with gradients of plastic distortion.
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This also neglects the fact that elastic and plastic distortions are undefined in the

presence of disclinations.

In section 2.2.2 the models suggesting possible sites and sources for disclination

nucleation were discussed [344, 179, 340, 301, 302, 334, 303, 424, 362, 166, 164, 165,

337, 336, 333, 338]. It was suggested that the disclination nucleation could partly be

aided by local plastic rotations induced due to the accumulation of plastic strain in the

vicinity of a disclination. Therefore a component of the source term for disclinations

should be associated with plastic slip history, specifically the local rotation induced

due to plastic slip. The source term kθ accounts for all possible sources leading

to disclination nucleation as well as annihilation, apart for those arising from the

evolution of plastic curvature. In the present work, however the disclination source

term kθ is neglected.

Deriving motivation from the work of Mura [289], Acharya [2] proposed a similar

expression as equation (3.77) for transport of polar dislocation densities in terms of

the plastic distortion. Since in the presence of both disclinations and dislocations

the plastic distortion is undefined, therefore the new modified transport equation for

polar dislocations is given by taking the time derivative of equation (2.99),

α̇ = −curl ε̇p + κ̇pT − tr(κ̇p)I + kα = −∇× ε̇p + κ̇pT − tr(κ̇p)I + kα or

α̇ij = −ejklε̇pil,k + κ̇pji − κ̇
p
kkδij + kαij (3.79)

with the plastic strain rate given as,

ε̇p =
1

2

(
α× ~V α + (α× ~V α)T

)
or ε̇pij =

1

2
(ejklαikV

α
l + eiklαjkV

α
l ) (3.80)

where ~V α is the dislocation velocity. Polar dislocation density has an incremental

contribution coming from the incompatible plastic strain along with a disclination

source term sθ = κ̇pT − tr(κ̇p)I. The source term sθ implies that dislocations are

nucleated as a consequence of the transport of disclinations. These could result in
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stress relaxations in the vicinity of dislocations [339, 204, 333]. The source term kα

accounts for sources of dislocations besides transport of disclinations.

Similar to compatible plastic curvature κp‖, compatible plastic strains εp‖ are

also developed during the transport of defects. These accumulate to form the plastic

strain history in the material [2].

In the work of Acharya [2], the dislocation density is associated with individual

slip systems in a grain. With such a formulation the field dislocation mechanics

model is capable to probe at fine scales (≈ 10−9 − 10−7m). With the introduction

of disclinations, FDDM is capable of probing magnitudes of Frank’s vectors leading

to displacements at or below the interatomic spacing. Burgers vector causing these

displacements can be associated with the DSC lattice which allows lower magnitudes

than Burgers vectors of the crystal lattice. These type of lattices are used to describe

the structure of GBs within the framework of the dislocation structural unit model

[387] as well as the disclination structural unit model [139]. The FDDM model can

therefore be combined with these GB representation models to probe the interatomic-

scale along with the fine scale through dislocations.

Modeling the transport of dislocations and disclinations requires appropriate con-

stitutive relationships connecting the defect velocities with the stress state. In order

to obtain these, the mechanical dissipation formulation is revisited for the case of a

simply connected body containing an arbitrary distribution of dislocations and discli-

nations and undergoing plastic deformation under the action of surface traction and

moments. In this case, the second law of thermodynamics dictates that the mechani-

cal power dissipation is positive i.e. the net work done to bring the system from state

A to B is more than the change in internal energy of the system. In fact the energy

stored is used to elastically deform the material; the power dissipated corresponds

to the rate of plastic work done. Recalling from the dissipation equation (3.21) and
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substituting for the internal energy density from (3.23) gives:

D =

∫
V

(
ε̇p : σs + κ̇p : MD

)
dV or D =

∫
V

(
ε̇pijσ

s
ij + κ̇pijM

D
ij

)
dV (3.81)

Substituting equations (3.78) and (3.80) for plastic curvature and strain rates

gives,

D =

∫
V

(
1

2

(
α× ~V α + (α× ~V α)T

)
: σs +

(
θ × ~V θ

)
: MD

)
dV or

D =

∫
V

(
1

2
(ejklαikV

α
l + eiklαjkV

α
l )σsij + ejklθikV

θ
l M

D
ij

)
dV (3.82)

The symmetric force stress or the Cauchy stress tensor extracts only the sym-

metric component of the plastic strain rate, therefore the dissipation equation can be

rewritten as,

D =

∫
V

((
α× ~V α

)
: σs +

(
θ × ~V θ

)
: MD

)
dV =

∫
V

(
~Fα · ~V α + ~F θ · ~V θ

)
dV or

D =

∫
V

(
ejklαikV

α
l σ

s
ij + ejklθikV

θ
l M

D
ij

)
dV =

∫
V

(
Fα
i V

α
i + F θ

j V
θ
j

)
dV (3.83)

where ~Fα and ~F θ are the driving forces for dislocations and disclinations, respectively

and are given as,

~Fα = −2X(σs ·α) or Fα
i = eijkσ

s
ljαlk (3.84)

~F θ = −2X(MD · θ) or F θ
i = eijkM

D
lj θlk (3.85)

Acharya [2] has shown the relationship of ~Fα to the Peach-Köhler force driving

the dislocations either on their glide or non-glide planes by using the dyadic notation

α = ~b⊗ ~ξ to give,

~Fα = σs ·~b× ~ξ or Fα
i = ejklσ

s
ijbkξl (3.86)

It can be seen that with such a formulation the dislocation density tensors can be

directly connected to crystallography; the dislocation density is no longer infinitely

large and the Burgers vectors is no longer infinitely small as is usually assumed in

the case of a structureless continuum approach [288].
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A relationship, similar to ~Fα, can be obtained for ~F θ by substituting θ = ~Ω⊗ ~ξ,

~F θ = MD · ~Ω× ~ξ or F θ
i = ejklM

D
ij Ωkξl (3.87)

~F θ can be thought of as an equivalent moment force. Note that the connec-

tion between disclination motion and crystallography is not completely understood.

However, it is known that movement of disclinations does not have an analogous re-

striction to particular slip systems. Also, note that since couple stresses are related

to only the anti-symmetric component of the force stresses, the Peach-Köhler type

relationship still holds in the presence of disclinations showing that the dislocation

motion is insensitive to couple stresses. In general, this agrees well with the success of

dislocation based plasticity models that are formulated based on the classical Hooke’s

law, for example, the field dislocation mechanics model [2].

A phenomenological relationship between the defect velocities and the driving

forces can be proposed as [2, 134],

~Fα = Bα~V α or Fα
i = BαV α

l (3.88)

~F θ = Bθ~V θ or F θ
i = BθV θ

l (3.89)

Bα and Bθ are material parameters which in general are positive definite second

order tensors that account for the temperature dependence of the motion of defects

and the non-locality induced in presence of defects. For example, it is possible that

the mobility of disclinations is dependent on the concentration of polar dislocations

in its vicinity, and vice versa, which is accounted for by these tensors. Their physical

dimensions are those of stress divided by a length and a velocity. In the present

work, Bα and Bθ are taken as scalar constants. In Equations (3.88) and (3.89)

assume that a linear viscous drag may be applicable at relatively high loading rate

and would require modification to account for thermally-activated motion of defects

which usually occurs at low loading rates.
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Finally, the complete set of governing equations for the elasto-plastic FDDM are

given as,

θ = −curl κp⊥ = −∇× κp⊥ or θij = −ejklκp⊥il,k (3.90)

α = −curl εp⊥ + tr(κp(‖+⊥))I − κp(‖+⊥)T = −∇× εp⊥ + tr(κp(‖+⊥))I − κp(‖+⊥)T

or αij = −ejklεp⊥il,k + κ
p(‖+⊥)
kk δij − κp(‖+⊥)

ji (3.91)

κp‖ = κ̂p‖ or κ
p‖
ij = κ̂

p‖
ij (3.92)

εp‖ = ε̂p‖ or ε
p‖
ij = ε̂

p‖
ij (3.93)

κ̇p = θ × ~V θ or κ̇pij = ejklθikV
θ
l (3.94)

ε̇p =
1

2

(
α× ~V α + (α× ~V α)T

)
or ε̇pij =

1

2
(ejklαikV

α
l + eiklαjkV

α
l ) (3.95)

div

(
σs − 1

2
{divM}

)
= ∇ ·

(
σs − 1

2
{∇ ·M}

)
= 0 or σsij,j +

1

2
eijkMkl,lj = 0(3.96)

θ̇ = −curl (θ × ~V θ) + kθ = −∇× (θ × ~V θ) + kθ or

θ̇ij = −ejklelmn
(
θimV

θ
n

)
,k

+ kθij (3.97)

α̇ = −curl ε̇p + κ̇pT − tr(κ̇p)I + kα = −∇× ε̇p + κ̇pT − tr(κ̇p)I + kα or

α̇ij = −ejklε̇pil,k + κ̇pji − κ̇
p
kkδij + kαij (3.98)

σ(pq) = C(pq)(kl)ε
e(‖+⊥)
(kl) +B(pq)[kl]mκ

e(‖+⊥)
[kl]m + κ

e(‖+⊥)
[ij]k D[ij]k(pq) (3.99)

M[pq]r = ε
e(‖+⊥)
(ij) B(ij)[pq]r +D[pq]r(lm)ε

e(‖+⊥)
(lm) + A[pq]r[lm]nκ

e(‖+⊥)
[lm]n (3.100)

~V α = − 2

Bα
X(σs ·α) or V α

i =
1

Bα
eijkσ

s
ljαlk (3.101)

~V θ = − 2

Bθ
X(MD · θ) or V θ

i =
1

Bθ
eijkM

D
lj θlk (3.102)

with constraints (2.88), (2.89), (2.90), (2.91), (2.93), (2.104) and augmented condi-

tions (2.94), (2.95). Also, recall the relationship between third order and second order

curvatures and couple stresses, (2.52) and (3.35).

In the following, the numerical scheme to solve the FDDM problem as presented in

the work of Fressengeas et al. is briefly discussed. The author would like to highlight

that this methodology is used in the FEM simulations (relevant to the present work

and briefly discussed in the coming chapters) performed by Dr. Vincent Taupin from
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the LEM3 laboratory of CNRS, in France.

In the FDDM model, the unknowns are the displacement ~u fields. Assuming

that the disclination and dislocation densities are known at a step in time gives

the incompatible component of κp from equation (3.90) (using the side conditions

mentioned in relation with equation (2.94)), but finding the incompatible part of εp

from equation (3.91) requires knowledge of the history-dependent compatible part

of κp. Therefore, the algorithm is as follows. Suppose an arbitrary distribution of

dislocations and disclinations is known at the initial time and let the compatible

part of the plastic curvature and plastic strain tensors arbitrarily set to zero, without

loss of generality. Then, the incompatible parts of κp and εp can be determined

from equations (3.90) and (3.91) respectively. Then, using the constitutive relations

(3.99) and (3.100), the equilibrium equation (3.96) can be solved for the displacement

vector fields, which are obtained uniquely, up to a rigid body motion. In addition, the

plastic strain rate and curvature rate can be computed from equations (3.94), (3.95)

using dislocation and disclination velocities (3.101) and (3.102), respectively. These

are utilized to update the plastic strain and curvature. In this algorithm, only the

compatible parts of the plastic strain and curvature are needed for the update. Finally,

the dislocation and disclination densities are updated using transport equations (3.97)

and (3.98), and the procedure can therefore be iterated at the next time step.

The rate form of the governing equations leads to a simpler incremental algorithm,

at the expense of an arbitrary initial distribution of crystal defects. Taking the time

derivative of equations (3.96), (3.99), and (3.100) the rate equations are:

div

(
σ̇s − 1

2
{div Ṁ}

)
= ∇ ·

(
σ̇s − 1

2
{∇ · Ṁ}

)
= 0 (3.103)

κ̇p = θ × ~V θ (3.104)

ε̇p =
1

2

(
α× ~V α + (α× ~V α)T

)
(3.105)

θ̇ = −curl κ̇p + kθ = −∇× κ̇p + kθ (3.106)
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α̇ = −curl ε̇p + κ̇pT − tr(κ̇p)I + kα = −∇× ε̇p + κ̇pT − tr(κ̇p)I + kα (3.107)

σ̇s = C : (ε̇− ε̇p) +B : (κ̇− κ̇p) (3.108)

Ṁ
D

= D : (ε̇− ε̇p) +A : (κ̇− κ̇p) (3.109)

~V α = − 2

Bα
X(σs ·α) (3.110)

~V θ = − 2

Bθ
X(MD · θ) (3.111)

Suppose that all fields are known at a given step in time. For the next time

step, the unknowns are the material velocity fields ~v. They are solutions to the rate

of equilibrium problem (3.103), (3.108) and (3.108). In these equations, the plastic

strain rate and curvature are obtained from the dislocation/disclination densities and

stress/couple-stress tensors by using equations (3.104) and (3.105) and (3.110) and

(3.111). Once the dislocation and disclination densities are updated using equations

(3.106) and (3.107), the rate of equilibrium procedure can be iterated at the following

time step. In this incremental scheme, the determination of the incompatible parts of

the plastic curvature and strain arising from an initial distribution of crystal defects is

avoided. Hence, in contrast with the first algorithm, there is no continuity requirement

on the plastic curvature and strain, but only on their rates. Therefore, the solutions

obtained from these two algorithms might turn out to be somewhat different. If the

choice is made to also avoid the initial determination of the incompatible part of the

plastic curvature and strain, then the relaxation of an arbitrarily chosen configuration

of plastic strain and curvature may be used to define workable initial conditions.

A Galerkin least-square weak solution of the transport equation along with Galerkin

weak formulation for the equilibrium equations as proposed in the work of Varadhan

et al. [430] is used to solve the dynamic FDDM problem. The methodology is not

shown here since it was not developed during the course of the present thesis work.

Interested readers are directed towards the work of Varadhan et al. [430].

From a computational standpoint, the continuous approach has an advantage over
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the discrete approach. Using the finite element scheme in a continuous approach [2,

6, 343] incurs a fixed computational cost because the system’s DOF remain the same;

the continuous fields of defects are always defined at every point in the domain and can

attain any value without incurring any additional computational cost. On the other

hand, finite element based discrete defect models [224, 92, 479, 360, 142, 449, 53, 36]

have an increasing cost due to the evolution of defects and nucleation of new defects

which increases the DOF of the problem.

3.4 Incompatibilities at meso-scale

The fine scale FDDM model allows incompatibilities defined at the interatomic scale

or fine scale to be associated with individual defects. Taking the Burgers and Frank’s

circuit about the defect core would give the net polar defect density from which

it is possible to characterize the defect as a dislocation, disclination or mixed type

satisfying equations (2.108) and (2.109). The velocities of the defect are also known

through equations (3.101) and (3.102), and using these it is possible to know their

position at any given time. Therefore, at the fine and interatomic length scales, the

incompatibilities can be directly used to characterize individual defects.

However, at the meso-scale, where defect cores are indistinguishable, incompatibil-

ity cannot be associated with an individual defect. At such length scales, the Burgers

and Frank’s circuits are generally threaded by an ensemble of defects with different

polarities and orientations. The net incompatibility may reduce or become equal to

zero. In this case, the dislocation and disclination densities, as defined in equations

(2.92) and (2.98), would be referred to as statistical defect densities. Consider the

example shown in figure 3.1 for a dislocated crystal viewed at the meso-scale. Burgers

circuits are drawn around randomly chosen regions and the net polarity is measured.

This helps identify regions having net Burgers vectors greater than, equal to or less

than zero. A region having net Burgers vector equal to zero is not necessarily devoid
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of defects. On the other hand, a region having a net positive or negative polarity

when viewed at the fine scale may contain a significant portion of the volume where

the defect density is equal to zero. However, at the meso-scale the entire region is

identified by a dislocation density corresponding to the net non-zero polarity.

Figure 3.1: Incompatibilities and net polarity at the fine and meso- scales

3.5 Meso-scale dynamic field disclination and dislocation
mechanics

At the meso-scale, performing statistical averaging of polar densities of defects thread-

ing the Burgers or Frank’s circuits drawn around any region in the volume could lead

to a vanishing net incompatibility. However, the statistical defect content of this
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region may not necessarily be zero. In addition, it is possible that some of these

statistical defects are mobile and can evolve under the influence of stresses. In their

present form, equations (3.78) and (3.80) are not able to capture plastic curvature

and strain rates arising from statistical defects. Furthermore, the defect velocities at

meso-scale are defined as a statistical average and equations (3.101) and (3.102) may

not appropriately reflect the mobility of ensembles of defects.

To that end, an extension to the FDDM needs to be introduced in order to account

for the evolution of statistical defects such that (1) the stress field of average, polar

dislocation and disclination densities that do not vanish at the meso-scale, (2) plastic

strain and curvature rate arising from the temporal evolution of these densities, and

(3) the effect of polar densities on the strength of the material. Such an extension

was proposed in the case of dislocations by Acharya and Roy [6] and is extended to

the general case of dislocations and disclinations in this work. Figure 3.2 pictorially

describes the above discussion for the case of dislocations.

3.5.1 Phenomenological meso-scale fields

Acharya and Roy [6] proposed to extend the plastic strain rate having only the polar

dislocation density contribution in equation (3.80) by introducing the term Lp to

account for statistical dislocations as an additional contribution at the meso-scale:

ε̇p =
(
α× ~V α +Lp

)s
or ε̇pij =

1

2

(
ejklαikV

α
l + eiklαjkV

α
l + Lpij + Lpji

)
(3.112)

The statistical term Lp is phenomenologically associated with the conventional

plastic slip rate tensor, which reads:

Lp =
∑
s

γ̇ps ~ms ⊗ ~ns =
∑
s

γ̇psP s or Lpij =
∑
s

γ̇psm
s
i ⊗ nsj =

∑
s

γ̇psP
s
ij (3.113)

where γ̇ps is the shear rate on slip plane s of slip direction ~ms and normal ~ns. P s is the

Schmid tensor. Note that, plastic strain generated from the transport of dislocations

or disclinations is not considered here. Plastic slip on system s is activated by the

143



Figure 3.2: Illustration of plastic flow as a function of spatial resolution scale. At the
fine or interatomic scale resolution sketched by the orange Burgers, the plastic strain
rate produced by the expansion of a dislocation dipole with velocity ~V

α
is resolved

by the mobility of polar dislocation densities. At the meso-scale resolution sketched
by the green circuits, the net polarity of the dislocation dipole is zero, resulting in a
statistical dislocation density. The plastic strain rate produced by the expansion of
the dislocation dipole cannot be resolved by the mobility of polar dislocation densities
and must be accounted for by a statistical rate term.

resolved shear stress τs = σs : P s through the relation:

γ̇ps = γ̇p0(|τs/τ0|)nsign(τs) (3.114)

where γ̇p0 , τ0 and n are the reference plastic strain rate, critical resolved shear stress

and power law exponent, respectively.

Forest et al. [125] and Mayeur et al. [267] suggested that the motion of dis-

locations also results in the evolution of plastic curvature rate. In their Cosserat

[125]/micropolar [267] strain gradient plasticity models, expressions were proposed

for the plastic curvature rate as a function of GND evolution during dislocation slip

[267]:
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κ̇pGND =
∑
s

~ts ⊗ b̂s φ̇0

Ls


〈
|M : ~t

s ⊗ b̂
s
|/Ls − σsy

〉
gs

n

sgn
(
M : ~t

s ⊗ b̂
s
)

edge

+

b̂s ⊗ b̂s φ̇0

Ls


〈
|M : b̂

s
⊗ b̂

s
|/Ls − σsy

〉
gs

n

sgn
(
M : b̂

s
⊗ b̂

s
)

screw

(3.115)

where ~t
s

= b̂
s
× ~ns is a slip system (s) vector that is orthogonal to the unit

slip vector or unit Burgers vector b̂
s

and the normal ~ns to the slip plane. The edge

and screw components correspond to additive decomposition of the polar dislocation

density tensor α = b
∑
s

αsedgeb̂
s
⊗ ~ns +αsscrewb̂

s
⊗ b̂

s
. φ̇0 is the rotation rate, Ls is the

characteristic plastic length scale, σy is the yield strength, gs is the threshold couple

stress.

Mayeur et al. [267] later proposed a single plastic flow criterion (similar to the

power law formulation in equation (3.115))for both plastic strain and curvature rates

based on the argument that additive decomposition of polar dislocation density ten-

sor into edge and screw components may not be appropriate for finite deformation

plasticity models [17, 286].

In both the single- and multi-criterion (different plastic flow rules for strain and

curvature rate) models, generation of polar disclinations due to plastic curvature

evolution is not taken into consideration. Polar disclination evolution is a direct

consequence of the kinematic relationship shown in equation (3.97). Furthermore,

while spatial averaging results in a net zero polar disclination density, the number

density of disclinations is non-zero i.e. they become statistical in nature. Evolution

of these statistical disclinations could have additional contributions to the plastic

curvature. This can also be understood from the illustration shown in figure 3.3.

Even further, due to the non-locality associated with disclinations, GNDs may be

generated (refer to figure 3.3) that do not evolve as a function of the slip system. This

could become particularly important in nc materials where plasticity via dislocation

145



slip becomes energetically unfavorable and GB mechanisms are activated.

Figure 3.3: Illustration of plastic curvature rate as a function of spatial resolution
scale (κ̇pGND is not shown). At the fine or interatomic scale resolution sketched by
the orange Frank’s circuit, the plastic curvature rate produced by the expansion of a

disclination dipole with velocity ~V
θ

is resolved by the mobility of polar dislocation
densities. At the meso-scale resolution sketched by the green circuits, the net polarity
of the disclination dipole is zero, resulting in a statistical disclination density. The
plastic curvature rate produced by expansion of the disclination dipole cannot be
resolved by the mobility of polar disclination densities and must be accounted for
by a statistical rate term. Non-locality associated with disclinations results in the
generation of polar dislocations that may not evolve as a function of slip systems and
need to be taken into account.

In light of the above, a phenomenological extension to the fine-scale plastic cur-

vature rate equation (3.94) is proposed to account for plastic curvature evolution

coming from GNDs generated due to plastic slip (κ̇pGND) and evolution of statistical

disclinations and non-local polar dislocations at the meso-scale as:

κ̇p = θ × ~V θ + κ̇pGND + κ̇p∗ or κ̇pij = ejklθikV
θ
l + κ̇pGNDij

+ κ̇p∗ij (3.116)

where κ̇p∗ represents the statistical plastic curvature rate. Deriving motivation from

the power law formulation proposed in the Cosserat/micropolar strain gradient plas-

ticity models of Forest et al. [125] and Mayeur et al. [267], respectively, an expression

for κ̇p∗ is proposed as:

κ̇p∗ = k
MD

||MD||
or κ̇pij = k

MD
ij√

MD
klM

D
kl

(3.117)
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where k is assumed to have the simplest power law relationship as:

k = κ̇p0

(
||MD||
M0

)n
or k = κ̇p0


√
MD

ijM
D
ij

M0

n

(3.118)

where κ̇p0, M0 and n are the reference plastic curvature rate, reference couple stress

and the power exponent, respectively. Note that with such a formulation, the present

framework becomes multi-criterion. This is necessary to account for the plastic cur-

vature contribution coming from both statistical disclinations and non-local polar

dislocations, which is different from GND evolution due to dislocation slip. The use

of a multi-criterion model [17, 286] is also facilitate by the present framework based

on a small strain hypothesis; it allows for the additive decomposition of the polar

dislocation density into screw and edge components discussed in equation (3.115).

The motion of disclinations is not bound to a particular slip direction. Therefore,

unlike the case of Cauchy stresses in plastic strain rate and couple stresses in κ̇pGND,

the couple stresses in κ̇p∗ are not resolved in direction of a slip system and as a first

estimate k is taken as a function of the norm of couple stress thus making it frame

invariant. A similar expression was proposed in the work of Romanov and Vladimirov

[339] to account for relaxation of moments via GB rotation.

The term κ̇0 has dimensions of (1/m) and can be expressed as a function of an

evolving reference plastic rotation rate (ω̇/Lc) where ω̇ is a rotation rate and Lc is the

characteristic plastic length scale. This has the same form but different significance

than the reference curvature rate (φ̇/Ls) in equation (3.115). The latter corresponds

to lattice rotation fields induced in the presence of polar dislocations generated from

dislocation slip that have a much larger distribution than the incompatible rotation

fields associated with disclinations. This in turn should be reflected from the char-

acteristic length scales Lc and Ls which have to satisfy the inequality Lc < Ls. The

threshold couple stress has dimensions (N/m) similar to the component gs in equation

(3.115).
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In the present work, the focus is on highlighting the possible role of statistical

disclination evolution during plastic deformation. Mayeur et al. [267] reported that

stress v/s strain curves plotted for the plastic deformation of a single crystal while al-

lowing plastic curvature evolution results in a reduction of slope in plastic regime com-

pared to the conventional elasto-viscoplastic case for metals. Relaxation of Cauchy

stresses due to grain rotations should be expected due to κ̇p∗ evolution. This is tested

in chapter 5 where the applications to polycrystalline materials are studied. Note that

the intent here is not to quantify the amount of plastic deformation accommodated

via curvature evolution. Therefore, the contributions of κ̇pGND will not be considered

and henceforth any reference to the phenomenological or meso-scale plastic curvature

rate shall be to κ̇p∗. Appropriate estimates for κ̇0 and M0 based on microstructural

conditions shall be chosen for the sake of illustration.

The transport equations for polar disclination and dislocation densities, equations

(3.97) and (3.98), now read as:

θ̇ = −curl (θ × ~V θ + κp∗) + kθ = −∇× (θ × ~V θ + κp∗) + kθ or

θ̇ij = −ejklelmn
(
θimV

θ
n

)
,k

+ ejklκ
p∗
il,k + kθij (3.119)

α̇ = −curl (ε̇p + (Lp)s) + (κ̇p + κ̇p∗)T − tr(κ̇p + κ̇p∗)I + kα

= −∇× (ε̇p + (Lp)s) + (κ̇p + κ̇p∗)T − tr(κ̇p + κ̇p∗)I + kα or

α̇ij = −ejkl(ε̇pil,k + Lp(il),k) + κ̇pji + κ̇p∗ji − (κ̇pkk + κ̇p∗kk)δij + kαij (3.120)

The meso-scale field disclination and dislocation mechanics model is expected to

be useful in material systems where dislocation-mediated plasticity is limited, either

because the average grain size becomes too small, as in ultrafinegrained or nano-

crystalline materials, or because the material does not have enough slip systems, like

Olivine which has an orthorhombic crystal structure.
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3.5.2 Plasticity beyond dislocations

The concept of plastic curvature evolution was first treated in the work of Forest et al.

[125]. This work follows a similar approach, albeit within the relatively simpler couple

stress theory framework, but introduces a generic form of the plastic curvature rate

to allow capturing both statistical dislocation and disclination contributions to lattice

curvature which result in the generation of geometrically necessary disclinations and

dislocations. Such a contribution to the latter is in addition to external loading

conditions (bending or torsion), internal sources of plastic inhomogeneity and elastic

heterogeneity across interfaces.

With respect to disclination contribution to plasticity, a handful of experimental

studies [291, 254, 244] and theoretical considerations [333] have suggested that discli-

nations nucleate in order to accommodate plasticity in materials undergoing severe

plastic deformation via grain rotation. This mechanism is in addition to the grain

rotation caused due to GB sliding and shear coupled GB migration. Furthermore, the

metastable equilibrium state associated with the presence of disclinations could lead to

driving forces that may contribute to the nucleation of new grains, twins, cracks, etc.

The proposed meso-scale model is the first model that is capable to account for the

contribution of disclinations to plasticity in a kinematically and thermo-mechanially

rigorous manner. In addition to nucleation/annihilation of disclinations, the proposed

meso-scale model provides the necessary basis for capturing GB related mechanisms

at the meso-scale by accounting for both plastic strain and curvature conrbutions to

plasticity.

The strain gradient plasticity models [9, 120, 123, 121, 304, 138, 156, 4, 28, 122,

157, 153, 124, 267] and field dislocation mechanics model of Acharya [2] have shown

that incompatible elastic/plastic strains can definitely be introduced as multi-scale

metrics encompassing the fine, meso- and macro scales. They have also introduced

polar dislocation densities, capturing the contribution of strains at the fine and meso-
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scales, as multi-scale metrics. The present framework augments this definition of

polar dislocation densities through the introduction of incompatible elastic/plastic

curvatures. Whether these can directly be treated as multi-scale metrics will be

put to test in the applications of the meso-scale field dislocation and disclination

mechanics model in section 5.

Finally, with respect to the classification of the proposed meso-scale model, it be-

longs to the higher order multi-criterion crystal plasticity models. Such a classification

finds its roots in the work of Forest and co-workers [125, 124] who introduced couple

stresses, which are generated due to presence of plastic curvature, as a back stress in

the yield criterion, and the viscoplastic relationship between plastic strain rate and

Cauchy stress. Forest [124] proposed that the evolution of plastic curvature followed

an independent yield criterion than the plastic strain and suggested an extension of

Von Mises (VM) plasticity thus making their model multi-criterion. This contrasts a

single-criterion crystal plasticity model which augments the VM plasticity model to

obtain a combined equivalent stress and equivalent strain measures [126, 267]. In its

present form, the proposed model presumes that Cauchy and couple stresses follow

different plastic evolution laws and may be interpreted as a multi-criterion model.

However, it is important to note that the equilibrium relationship (3.14), the geo-

metric constraint on polar dislocation and disclination densities and the fact that

both plastic strain and curvature lead to the generation of geometrically necessary

dislocations, suggest that the yield criteria for Cauchy and couple stresses should be

correlated. Development of a single criterion model, however, is beyond the scope of

present work.

3.6 Discussion

This chapter continues with the discussion on the continuous description of defects

following the previous chapter. Following the development of the compatible and
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incompatible geometric fields, the beginning of this chapter focuses on developing

new elastic constitutive laws that account for the presence of both compatible and in-

compatible elastic strains and distortions associated with the presence of dislocations

and disclinations. These are higher order with respect to the type of incompatibil-

ity that they are capable to account for and higher grade with respect to equivalent

gradients of displacement that are considered (in this case up to the second gradient

is considered). These laws are rigorously derived based on thermo-mechanical dis-

sipation considerations and satisfy the balance of mass, momentum and moment of

momentum. The dissipation based formulation can be used to extend these elastic

constitutive laws to account for more general phenomena such as higher order de-

fects (for example G-disclinations which induce incompatibilities in elastic distortion

[5, 421]), piezoelectric effect [396] on stresses, etc. Such problems may arise in the

case for those theories that are specially tailored to solve a very specific problem

within the domain of dislocation and/or disclination theory; for example the model

of Gurtin [157] which requires specifying non-standard boundary conditions.

In order to develop these elastic laws it is necessary to impose appropriate bound-

ary conditions that allow for the description of both dislocations and disclinations.

These are surface traction and moments along with rigid body displacements and/or

rotations. Imposing both traction and moments lead to the generation of Cauchy

and couple stresses in the domain. A coupling between Cauchy and couple stresses

is obtained through the equilibrium equation which is in tandem with the coupling

between these stresses through the elastic constitutive laws. The robustness of these

elastic laws is also observed in the simplest of symmetries associated with elasticity

i.e. linear isotropic elasticity. The framework upon which is such that in the linear

isotropic elastic case, the shape of the constitutive laws is affected by the presence or

absence of defects. In the latter case, the material has an additional point symmetry

which is lost when defects are present in the domain; albeit only in those regions
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where the incompatibility is non-zero. The linear isotropic elastic laws are able to

capture this difference through cross terms that couple the incompatible components

of elastic strain and curvature without any ad hoc assumptions. The presence or

absence of defects directly affects this coupling which in the latter case vanishes due

to the absence of incompatible elastic strains and curvatures.

The higher order elastic constitutive laws form a crucial component of the field

theory of dislocation and disclination mechanics [134]. This theory is based on in-

compatible description of continuously represented defects and models the motion of

these defects using transport equations. The dislocation velocities are phenomeno-

logically described using the Peach Koehler force which is a function of the Burgers

vectors and the Cauchy stresses. In the presence of disclinations, the Burgers vector

becomes a spatial function of the incompatible curvature through equations (2.107)

and (2.109). The dislocation density, which is a function of the Burgers vector, also

becomes spatially dependent, invariably transferring this property to the incompat-

ible elastic strains and curvatures through equation (2.98). In order for the Cauchy

and couple stresses to appropriately reflect the non-locality associated with the core

(through the incompatibility), an appropriate definition of the elasticity tensors needs

to be accounted for. This is naturally achieved via the length scale dependence of the

higher order elasticity tensors. The length factor in higher order elasticity tensors A,

B and D can be directly associated with the characteristic length of defects in the

domain. Such estimates have been provided in the works of Kröner [218], Maranganti

and Sharma [264], among others, which will be used in the following chapters to study

the role of incompatibilities at the fine and meso-scales. Focusing back on the defect

velocities, the non-locality associated with the Burgers vector and the Cauchy stress

should affect the transport of dislocations. Similarly, for the transport of disclina-

tions, a similar non-local effect should be observed through its dependence on the

couple stresses and hence their associated elasticity tensors. This will be put to test
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in the next chapter where the dynamic model is applied to study shear coupled GB

migration [58] of <001> symmetric tilt GBs.

The multi-scale nature of the elastic laws arises from their capacity to account for

the incompatible elastic strains and curvatures. At the length scale of defects (or the

fine scale), where incompatibilities can be associated with individual defects, these

laws have non-vanishing cross terms. However, at the meso-scale where spatial aver-

aging leads to a zero net incompatibility of the medium, these laws are still capable of

predicting the stresses through the compatible elastic strains and curvatures. Quite

interestingly, the fact that incompatibilities are associated with individual defects in

the current framework, requires the definition of the continuous framework at the

length scale of these defects. Consider the case of disclinations, these are used to

describe GB interfaces that can be as thin as 1 nm. In order for to apply the pro-

posed model, the continuum approximation must be made at the interatomic length

scale. Furthermore, at this scale the continuum should allow the balance of mass,

momentum and moment of momentum in order to satisfy the equilibrium conditions

everywhere in the domain. This type of a continuum is proposed and used in this

chapter. The implications of this approximation will be studied in the next chapter.

Focusing at the meso-scale, while spatial averaging could lead to a net zero incom-

patibility in the domain, it is possible and very likely that during plastic deformation

polar defect densities are generated within the medium. In this case, incompatibil-

ities in elastic strain and curvature are induced, however, these can no longer be

attributed to individual defects. Rather they are indicative of the net polarity of the

region where there are defined and induce a stress field of their own. It is crucial

to account for their contributions to plasticity along with the contribution of mobile

statistical defects present in the medium. To that end, the phenomenological field

disclination and dislocation mechanics model is proposed which combines the contri-

butions of both plastic slip and plastic curvature due to statistical defects and models
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the transport of polar defects in the medium. Such a theoretical construction paves

way for a transfer of information on field variables between the fine scale and the

meso-scale. This will be particularly useful in studying the influence of motion of GB

interfaces on the meso-scale response and vice versa.

3.7 Conclusion

New higher order/grade elastic constitutive laws, based on the incompatible frame-

work developed in the previous chapter, are proposed to account for the contribution

of incompatibilities in elastic strain and curvature at the fine and meso scales. These

laws form an integral part of the fine scale field disclination and dislocation me-

chanics theory that accounts for the transport of polar dislocation and disclination

contributions to local plasticity. A meso-scale phenomenological field disclination

and dislocation mechanics model is proposed that accounts for statistical dislocation

and disclination contributions to plasticity, in addition to those coming from polar

defect densities. The fine and meso scale models allow for a kinematically rigorous

continuous treatment of interfaces and junctions at both these scales by respecting

compatibility conditions on elastic and plastic strain and curvature at the interfaces.
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CHAPTER IV

TOWARDS A CONTIUOUS STRUCTURE SENSITIVE

MODEL OF GRAIN BOUNDARIES: APPLICATIONS TO

<001> SYMMETRIC TILT GBS AND TJS

The aim of this chapter is understand (1) the contribution of strain and curvature

incompatibilities to grain boundary energy and (2) the relationship between triple

junction geometry and energy.

To that end, the multi-scale field disclination and dislocation mechanics model

developed in the previous chapter will be applied to < 001 > symmetric tilt GBs

(STGBs) and TJs in face centered cubic (FCC) materials. In order to understand

the role of incompatibilities, GB energy vs. misorientation plots for <001> STGBs

are created and compared with those obtained from atomistic simulations and ex-

periments. Section 4.1 begins with first giving a detailed description of the discrete

disclination structural unit model (DSUM) [139] to represent the <001> STGBs.

Then the GB energy vs. misorientation curve is generated using just the out-of-core

compatible components of elastic strain and curvature; recall that core contributions

from disclinations are beyond the scope of a discrete approach. Next the discrete

approach is compared with the energy vs. misorientation curve generated using a

fully continuous approach that uses both compatible and incompatible contributions

of strain and curvature. From here it is possible to obtain an estimate on the in-

compatible contributions to GB energy. The crucial role of elastic constitutive laws,

developed in section 3.1, is highlighted in capturing the non-local behavior that is

necessary to drive the shear coupled GB migration in <001> STGBs.

In section 4.2, the focus is directed towards TJs constructed from STGBs. New
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kinematic constraints on the TJ dihedral and misorientation angles are developed

based on the tangential continuity considerations discussed in the previous chapter

in section C.0.2. New 2-dimensional maps of TJ energy vs. misorientations are

generated for TJs formed between <001> STGBs.

4.1 Incompatibility contribution to energy of <001> STGBs

4.1.1 Disclination structural unit model

The DSUM framework to represent GBs was briefly reviewed in section 2.2.2 and is

detailed in the following discussion for the case of <001> STGBs.

As originally proposed by Li, any perfect planar STGB, with misorientation θ

such that θ1 < θ < θ2, can be represented by a sequence of special boundaries sep-

arated by disclination dipoles of alternating Frank’s vector magnitude (strengths)

∆θ = ±(θ2−θ1). Therefore, a set of specific reference misorientations (θ1, θ2, . . . , θn)

– identifying special GBs – has to be selected. In the case of symmetric tilt bound-

aries about the <001> axis, the reference misorientations are 0o, 36.87o, 53.13o and

90o to which the structural units A, B, C and D are assigned, respectively. Each of

these misorientations is composed of only one repeated structural unit [387]. Struc-

tural continuity throughout the misorientation range entails that all non-favoured

boundaries – i.e. boundaries with misorientation different from that of the reference

special boundaries – consist of a periodically reproduced sequence of structural units

pertaining to the two nearest favoured boundaries. As such, all boundaries with mis-

orientation between 0◦ and 36.87◦ are composed of only A and B structural units. The

period of a given boundary will be composed of ’m’ majority units and ’n’ minority

units.

Consider a GB of misorientation θ such that θ1 < θ < θ2, where θ1 and θ2 are

misorientations associated with its adjacent special boundaries. The GB is thus

composed of majority and minority units associated with misorientation θ1 and θ2.
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Let d1 and d2 denote the rest length of each structural unit. Transitions from a

majority to a minority unit define the locations of disclination dipoles with strength

±∆θ = θ1 - θ2 and length d′2. Each dipole is separated by majority units with length

equal to an integral multiple of their characteristic length d′1 [139]. The period vector

of a non-special GB can be decomposed into the sum of the period vectors of its

associated special GBs. Figure 4.1 shows the decomposition of a period of a generic

STGB into structural units.

Figure 4.1: Projection of the structural units of a non planar GB.

The length of the period H is given by the following equations,

H = md′1 + nd′2 6= md1 + nd2 (4.1)
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H =

{
(md1)2 + (nd2)2 + 2mnd1d2 cos

(
θ2 − θ1

2

)}1/2

(4.2)

H sin

(
θ

2

)
= md1 sin

(
θ1

2

)
+ nd2 sin

(
θ2

2

)
(4.3)

d′1 = d1 cos

(
θ − θ1

2

)
(4.4)

d′2 = d2 cos

(
θ2 − θ

2

)
(4.5)

The structural units in figure 4.1 have undergone a geometric distortion from

their rest boundary lengths d1 (majority unit) and d2 (minority unit) to d′1 and d′2

due to the geometric constraints (4.1) on the period H. The distorted units in the

decomposed structure are thus the projection of the undistorted structural units on

the GB plane.

A series of 29 misorientations – between 0o and 90o – are considered in the case of

<001> STGBs. The dipole arm lengths are computed from equations (4.1). These

boundaries along with their period vectors, GB planes and structural decomposition

of the period are shown in table 4. The vertical lines denote a single period of the

GB and the dot represents a centered boundary – i.e. a boundary with more than

one CSL in its period.

Table 4: Structural unit decomposition of symmetric tilt

GBs about the [001] axis

θ

(deg)

GB

plane

Σ Structural Decomposition of the period Period

vector

3.95 (15 14 0) 421 |AAAAAAAAAAAAAB.AAAAAAAAAAAAAB| [1̄4 15 0]

6.03 (15 14 0) 181 |AAAAAAAAB.AAAAAAAAB| [9̄ 10 0]

12.68 (5 4 0) 41 |AAAB.AAAB| [4̄ 5 0]

16.26 (4 3 0) 25 |AAB.AAB| [3̄ 4 0]

Continued on next page
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Table 4 – Continued from previous page

θ

(deg)

GB

plane

Σ Structural Decomposition of the period Period

vector

20.02 (10 7 0) 149 |AABABAB.AABABAB| [7̄ 10 0]

22.62 (3 2 0) 13 |AB.AB| [2̄ 3 0]

25.06 (11 7 0) 85 |ABABABB| 1
2
[7̄ 11 0]

28.07 (5 3 0) 17 |ABB| 1
2
[3̄ 5 0]

30.51 (7 4 0) 65 |ABBB.ABBB| [4̄ 7 0]

33.40 (13 7 0) 109 |ABBBBBB| 1
2
[7̄ 13 0]

35.30 (29 15 0) 533 |ABBBBBBBBBBBBBB| 1
2
[1̄5 29

0]

36.87 (2 1 0) 5 |B.B| [1̄ 2 0]

39.60 (17 8 0) 353 |BBBBBBBC.BBBBBBBC| [8̄ 17 0]

42.08 (9 4 0) 97 |BBBC.BBBC| [4̄ 9 0]

43.60 (7 3 0) 29 |BBC| 1
2
[3̄ 7 0]

46.40 (5 2 0) 29 |BC.BC| [2̄ 5 0]

48.89 (8 3 0) 73 |BBC.BBC| [3̄ 8 0]

51.11 (17 6 0) 325 |BCCCCC.BCCCCC| [6̄ 17 0]

53.13 (3 1 0) 5 |C| 1
2
[1̄ 3 0]

54.95 (19 6 0) 397 |CCCCCCD.CCCCCCD| [6̄ 19 0]

56.60 (10 3 0) 109 |CCCD.CCCD| [3̄ 10 0]

58.11 (7 2 0) 53 |CCD.CCD| [2̄ 7 0]

61.93 (4 1 0) 17 |CD.CD| [1̄ 4 0]

64.94 (9 2 0) 85 |CDCDD.CDCDD| [2̄ 9 0]

67.38 (5 1 0) 13 |CDD| 1
2
[1̄ 5 0]

Continued on next page
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Table 4 – Continued from previous page

θ

(deg)

GB

plane

Σ Structural Decomposition of the period Period

vector

71.08 (6 1 0) 37 |CDDD.CDDD| [1̄ 6 0]

73.74 (7 1 0) 25 |CDDDD| 1
2
[1̄ 7 0]

78.58 (10 1 0) 101 |CDDDDDDD.CDDDDDDD| [1̄ 10 0]

82.37 (15 1 0) 113 |CDDDDDDDDDDDD| 1
2
[1̄ 15 0]

The sequence of arrangement of the structural units is unique to each boundary. The

arrangement of the structural units has to fulfil the following two conditions:

(1) The spacing between minority units must be maximized.

(2) The arrangement should form a periodic sequence continuous with the neigh-

bouring boundary structures.

A periodic sequence of ’m’ majority units and ’n’ minority units can be formed

in (m + n− 1)!/m!n! ways, and only one sequence fulfils the above conditions. The

generation of this particular sequence is detailed in Sutton and Vitek [387] and is

performed in two steps. For the sake of illustration, consider the θ = 20.02o boundary.

Its delimiting boundaries are the 0◦ and 36.87◦ boundaries. It is a centered boundary

with period vector [7̄ 10 0] and the period vectors of the 0o and 36.87o boundaries

are 1/2[1̄ 1 0] and [1̄ 2 0] such that the decomposition of the half period of 20.02o

boundary is:

1

2
[7̄ 10 0] =

4

2
[1̄ 1 0] +

3

2
[1̄ 2 0]

First, the majority units are associated with minority units such that each minority

unit is separated by the same number of majority units. With m = 4 and n = 3 one

obtains ABABAB.ABABAB. Second, from the remaining majority units, if any, each
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one is associated to an equal number of minority units. The sequence for the 20.02o

boundary is therefore AABABAB.AABABAB. The characteristic length of the B unit

is 0.28202 nm. Two pairs of these B units are separated by a majority A unit with

characteristic length 0.17757 nm and every third pair is separated by two A units

with the distance between the B units being twice the characteristic length of the

majority units i.e. 0.35514 nm.

The magnitude of the Frank’s vector and the characteristic lengths of the majority

and minority units of all the 29 boundaries shown in table 4 are presented in table 5.

Table 5: Characteristic length of the majority and mi-

nority units and the Frank’s vectors

θ (deg) Majority

units

’m’ in 1

period

Minority

units

’n’ in 1

period

d′1 (nm) d′2 (nm) Frank’s

vector Ω in

degrees

3.95 13(A) 1(B) 0.18021 0.27341 ±36.87

6.03 8(A) 1(B) 0.18006 0.27484 ±36.87

12.68 3(A) 1(B) 0.17921 0.27877 ±36.87

16.26 2(A) 1(B) 0.17850 0.28050 ±36.87

20.02 4(A) 3(B) 0.17757 0.28202 ±36.87

22.62 1(A) 1(B) 0.17681 0.28290 ±36.87

25.06 4(B) 3(A) 0.28358 0.17602 ±36.87

28.07 2(B) 1(A) 0.28426 0.17493 ±36.87

30.51 3(B) 1(A) 0.28466 0.17396 ±36.87

33.40 6(B) 1(A) 0.28497 0.17271 ±36.87

35.30 14(B) 1(A) 0.28507 0.17182 ±36.87

Continued on next page
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Table 5 – Continued from previous page

θ (deg) Majority

units

’m’ in 1

period

Minority

units

’n’ in 1

period

d′1 (nm) d′2 (nm) Frank’s

vector Ω in

degrees

36.87 1(B) 0(A) – – ±36.87

39.60 7(B) 1(C) 0.28502 0.40038 ±16.26

42.08 3(B) 1(C) 0.28480 0.40132 ±16.26

43.60 2(B) 1(C) 0.28461 0.40180 ±16.26

46.40 1(B) 1(C) 0.28411 0.40250 ±16.26

48.89 7(C) 1(B) 0.40291 0.28353 ±16.26

51.11 5(C) 1(B) 0.40313 0.28290 ±16.26

53.13 1(C) 0(B) – – ±16.26

54.95 6(C) 1(D) 0.40314 0.12158 ±36.87

56.60 3(C) 1(D) 0.40301 0.12212 ±36.87

58.11 2(C) 1(D) 0.40281 0.12260 ±36.87

61.93 1(C) 1(D) 0.40200 0.12369 ±36.87

64.94 3(D) 2(C) 0.12446 0.40105 ±36.87

67.38 2(D) 2(C) 0.12502 0.40008 ±36.87

71.08 3(D) 1(C) 0.12577 0.39825 ±36.87

73.74 4(D) 1(C) 0.12622 0.39669 ±36.87

78.58 7(D) 1(C) 0.12687 0.39330 ±36.87

82.37 12(D) 1(C) 0.12722 0.39014 ±36.87
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4.1.2 GB energy in discrete static case: contribution of compatible elastic
strains and curvatures

The DSUM has already been implemented using a discrete representation in a static

case to compute the energy of <001> STGBs in FCC Cu and Ni [23], and of [11̄00]

STGBs in hexagonal closed packed (HCP) metals [466] based on the structural unit

model in HCP by Farkas [116]. Closed-form analytical solutions were derived by Wu

[465] for the elastic strain and Cauchy stress fields of a periodic array of interfacial

wedge disclination dipoles in a bi-crystal under transversely isotropic conditions. In-

terestingly, thus far the contribution of elastic curvatures and couple stresses to the

elastic energy of GBs, have never been accounted for.

In light of the above, <001> STGBs represented using DSUM are studied in a 2-

dimensional static case. Infinitely long discrete disclination dipoles of strengths shown

in table 5 are used to represent the 29 <001> STGBS shown in table 4. The DSUM

uses a discrete representation of disclinations and therefore the GB elastic energy

computed here will have contributions coming from the out-of-core compatible elastic

strains and curvatures. Explicit expressions for these are given by equations (2.25)

and (2.28). The elastic laws are considered in an isotropic centro-symmetric case. In

this case, the cross terms associated with elasticity tensors B and D vanish. The

elastic energy is then given as,

Eel = Ecauchy + Ecouple (4.6)

Ecauchy =
1

2
σsijε

e‖
ij =

1

2
ε
e‖
ijCijklε

e‖
kl (4.7)

Ecouple =
1

2
MD

ij κ
e‖
ij =

1

2
κ
e‖
ijAijklκ

e‖
kl (4.8)

Figure 4.2 shows the procedure used to compute the elastic energy of GBs in

the discrete static case. A GB – of height of 10 µm – is placed at the centre of a

rectangular area of height equal to that of the GB and of width 100 nm. The energy

is computed in a rectangular area centred in the domain. It has a height equal to two
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times the period vector of the boundary and a width 20 nm – i.e. 10 nm on each side

of the GB. A two dimensional 4-point Gauss quadrature method is used to integrate

the energy of the GB. The two parameters of importance to reach the desired accuracy

are the mesh size and box size, both of which were optimized to reach convergence.

Note that, as the GB has a finite height, the width of the integration box is limited.

For the sake of accuracy, a very fine square mesh, of size 0.1 nm, is used to compute

the box energy. As illustrated in figure 4.2, showing the energy field associated with

the 20.02o boundary, it is found that using a width of 20 nm is sufficient to ensure

convergence. Finally, a core cut-off radius equal to the Burgers vector magnitude for

the (111) slip plane in FCC Copper is chosen; this is 0.255 nm. As expected the GB

energies obtained are finite and independent of the integration box size chosen.

Figure 4.2: Integration mesh and box dimensions (not to scale) and the disclination
arrangement in a 20.02o misorientation boundary. The red box denotes the area that
falls in the cut-off region whose half width is equal to the Burgers vector magnitude
for the <111> slip planes in FCC Cu. The right hand side of the figure shows the
σxx (MPa) component of the stress field.

The material constants taken here are those of Cu: G = 48 GPa, ν = 0.34, A1

= Gb2, A2 = 0, with b = 2.551 Å. The magnitude of A has been adopted from
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Kröners estimate [218]. As such, the present estimate of the curvature contributions

allows only for a description of its contribution to the GB energy shape and for

an appreciation of the relative orders of magnitude between the contributions from

strains and curvatures.

The numerical accuracy of the integration procedure is shown in figure 4.3(a),

presenting a comparison of the evolution of the elastic energy – Ecauchy – with re-

spect to the misorientation angle obtained from the numerical integration procedure

described above and the analytical formulae in the work of Bachurin et al. [23]. The

numerical approach is in good agreement with analytical proofs.

Figure 4.3: (a) Comparison between the Cauchy part of the elastic strain energy
obtained from analytical derivations and numerically as a function of misorientation
angles, (b) evolution of the total and Cauchy stresses and couple-stresses contributions
to the GB energy as a function of misorientation.

Figure 4.3(b) shows the evolution of Ecauchy and Ecouple, obtained via numerical

integration, as a function of GB misorientation. It is found that the contribution

of couple-stresses mimics that of Cauchy stresses. Furthermore, the contribution of

couple-stresses to the total elastic energy is not negligible. When compared with

the total energy obtained from atomistic simulations (shown in figure 4.4), however,

it is found that there is a huge difference in the elastic energy obtained from the

numerical procedure. In the DSUM – both in the case of infinite [139] and of finite

[276] boundaries – the total GB energy is taken as the sum of the elastic energy, the
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Figure 4.4: Comparison between the elastic energy obtained from numerical proce-
dure shown in figure 4.2 and the total energy obtained from molecular statics simu-
lations (points were digitized from [23]). The large difference in energy comes from
neglecting the core region when using a discrete representation of the GB.

average of the specific energies of each reference structural unit and the core energy of

each disclination dipole. These specific energies and core contributions are arbitrarily

chosen in order to fit the energies obtained from atomistic simulations. The huge

difference in the energies indicates that the core contributions are not negligible.

Accounting for these requires using a fully continuous approach.

4.1.3 GB energy in continuous dynamic case: contribution of incompat-
ible elastic strains and curvatures

This section is presented to briefly highlight the role of incompatibilities in elastic

strain and curvatures on the grain boundaries. This study was led by Dr. Vincent

Taupin and was directly motivated from the present work. Furthermore, the results

obtained in that work are important

Continuous representations of the GBs were obtained by representing the discli-

nation dipole walls that are used in the discrete DSUM model. The presence of these

continuous densities induces incompatible curvatures which result in the generation of
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Cauchy and couple stresses through the elastic constitutive relationship described in

section 3.1. The GBs are then allowed to relax under their own stress fields resulting

and the energies of the relaxed structures are plotted to re-create the <001> STGB

energy vs misorientation plot. Quite interestingly, the energies obtained from the

relaxed structures were found to be exceedingly small when compared with atomistic

predictions. This difference arises from using the DSUM representation of GBs in

the continuous approach. Reconsider the <001> STGBS shown in table 5. It can be

seen that the non-special GBs in the range 22.62o – 64.94o are referred with respect

to the boundaries 36.87o and 53.13o. The latter, which are special boundaries, are

devoid of any minority units and, hence, disclination dipoles. Therefore, they have

no contribution to the elastic energy of the GB. In the work of Bachurin et al. [23],

the energies of these special boundaries are assigned a conveniently chosen value in

order to fit the cusp energies with those obtained from experiments or atomistic sim-

ulations. However, such a fit is completely arbitrary. Furthermore, the energies are

computed using a discrete representation of disclination dipoles.

A new methodology to represent GBs was developed in the work of Fressengeas

Fressengeas et al. [135] with the aim to conform with the atomistic arrangements

within GBs as well as energetically match with atomistic simulations and experi-

ments. This is achieved by establishing a crossover between a discrete atomistic GB

configuration and an equivalent continuous disclination density field. The result is

shown in figure 4.5. Excellent agreement is found at all misorientations. Energy

cusps are obtained for the Σ5(310) and Σ5(210) boundaries of misorientation 36.9◦

and 53.1◦, respectively, in agreement with experimental data and atomistic predic-

tions. This method was used to simulate shear coupled grain boundary migration in

<001> STGBs by Taupin et al. [394]. The simulations also performed by Dr. Taupin

were directly motivated from the static and dynamic cases presented in the previous

section. Figure 4.6 shows the coupling factor predicted by the FDDM model for the
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shea coupled boundary migration of <001> STGBs. The simulations revealed that

the elastic constitutive laws presented developed by the author (refer to section 3.1)

were crucial in modelling the dynamic behavior of defects; the cross terms B and D

captured the non-local behavior that is induced in presence of disclinations, and were

necessary to initiate and drive the motion of GBs.

Figure 4.5: Elastic energy density per unit length of <001> tilt boundaries in cop-
per, as a function of misorientation. Blue circles: present work, red squares/green
triangles: experimental estimates/molecular statics predictions from [174], purple di-
amonds: molecular statics predictions from [408]. (Adapted from [135])

4.1.4 Continuous modelling at interatomic scale: rationalization

Based on all the results shown above, Fressengeas et al. [135] have provided a deep

insight on the meaning of continuous modelling at the interatomic scale which is in

accordance with most of the results shown in present work and is recalled in the

following.

The current understanding is that the assumption of continuity of the field vari-

ables is no longer valid at or below the interatomic scale where the discrete atomistic
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Figure 4.6: Shear-coupling factor as a function of misorientation. The dots represent
the values obtained by the present simulations. The two solid lines represent the
values predicted by the <001> and <110> shear deformation modes defined in [58].
(Adapted from [394])

nature of matter becomes apparent. Therefore, it is generally believed that continuum

mechanics fails to appropriately capture the physical phenomena pertaining to this

length scale. The present results demonstrate that an appropriate, non-local contin-

uum description involving smooth fields of displacement and crystal defect densities

can be adequate for the purpose of capturing the physical phenomena at this length

scale, and may usefully complement atomistic representations.

Using a continuous approach at length scales below the elementary lattice param-

eters is certainly meaningful from the point of view of the differential geometry of

continua. However, the fundamental reason for the ability of the present framework

to describe physical properties at nanoscale is that it deals with the breaking of lat-

tice symmetry and non-locality of the elastic behavior resulting from fluctuations of

inter-atomic forces that take place in the core of crystal defects. It is interesting to

note that accounting for the non-linearity of elasticity is not as essential as consid-

ering its non-local character. Although elastic dilatations as high as 20% are found
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in the present calculations, using linear elasticity does not prevent from accurately

retrieving the elastic energy of the GB. Furthermore, this excellent agreement was

obtained without introducing any ad hoc fitting parameter in the formulation.

A continuous description of lattice defects may be considered as more attractive

than discrete approaches for various reasons. Smoothness is desirable from the point

of view of mathematical analysis and numerical computation, and because it allows

coping with core properties. When viewed at a sufficiently small scale, lattice defects

and the corresponding distributions of elastic strain and energy are better described by

suitably localized smooth density fields than by a singularity. Furthermore, (ii) using

continuous density fields to model crystal defect ensembles comes rather naturally

from the structure of their conservation laws, i.e., equations (3.97) and (3.98). From

a kinematic point of view, the latter provide a rational framework for the dynamics of

defects. In the present work, this feature is used to set out a boundary value problem

for the displacement and dislocation/disclination density fields. This gives rise to the

non-locality in space and time in the standard variables of conventional continuum

mechanics. This non-local generalization of the latter, leads to well-posed problems in

dislocation and disclination dynamics. In addition, (iii), this approach has a potential

for computational efficiency because it does not have to resolve atomic vibrations. The

kinetic energy of atomic and subatomic vibrations is time-averaged over periods of

microseconds, and characterized as dissipation. Thus, by time coarse-graining, the

atoms and their fast vibrations are replaced with the dissipative evolution of smooth

dislocation/disclination density fields embedded in an elastic continuum. As a result,

finite element simulations may allow considering the dynamics of crystal defects over

time scales in the µs or more, under realistic loading rates and stresses.

Finally, (iv), a continuous approach of crystal defects at nanoscale like the present

one provides a natural basis for the derivation of a continuous theory of crystal de-

fect ensembles at meso-scale through appropriate averaging techniques. This was
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proposed in section 3.5 where the structure of the meso-scale theory was derived by

defining space-time averaged field variables as weighted, running averages of the cor-

responding nano-scale field variables over a domain whose scale is determined by the

desired spatial and temporal resolution [22, 6, 343]. From the results shown above,

several features can be anticipated that help understand implications of the present

results at nanoscale on the structure of an averaged theory whose resolution length

scale is too large to resolve GBs. Firstly, the averaged plastic strain/curvature rates

defined in the coarse-graining process involve not only the averaged strain/curvature

rates associated with the motion of signed defects (polar dislocations/disclinations)

(3.95, 3.94), but also the strain/curvature rates (Lp, κ̇p∗) associated with statistical

dislocation/disclination densities of no polarity. Secondly, the conservation of the

Frank and Burgers vectors implies the jump conditions (seen in section C.0.2) on the

meso-scopic plastic curvature rate and strain rate, respectively, at the GB. These have

a consequence on the non-locality of these field variables which affects the transport

of defects for the case of shear coupled GB migration [394].

With a careful implementation of the continuum at the inter-atomic length scake,

this approach can provide a basis for developing multi-scale models that encompass

the inter-atomic, fine, meso- and macro- scales. This could be a potential alter-

native to coupled atomistic-continuum models such as the ”coupling length scales”

method [1], quasicontinuum method [392], ”coupled atomistic and dislocation dy-

namics” method [367, 368], and the more recent ”concurrent atomistic-continuum”

method [471, 468, 469, 470].

4.2 TJs from <001> STGBs

In this section, a special case of TJs (TJs) – constructed from <001> STGBs – is con-

sidered. The discussion begins by deriving the kinematic constraints that are imposed

171



on the TJ dihedral angles and associated GB misorientations due to the available de-

grees of freedom to represent a TJ using STGBs in 2-dimensions. Then compatibility

conditions are derived based on tangential continuity of elastic curvature at the TJ.

Energies of TJs are plotted as a function of dihedral angles and misorientations. These

are compared with energies obtained from TJ configurations respecting to kinematic

constraints, compatibility conditions and Herring’s relationship, respectively.

4.2.1 Kinematics

11 DOF are required to construct a TJ: 5 to define a first boundary, 5 to define a

second boundary and 1 to define the orientation of the third boundary, which is left

with only one rotation degree of freedom as it initiates at the intersection of the two

other boundaries. If additionally, one considers the kinematic constraints imposed by

the closure condition on a circuit mapped around a TJ, solely 8 DOF are required

to uniquely define a TJ. These are reduced to 4 in the 2-dimensional case (i.e. each

grain orientation and GB orientation less the circuit closure constraint). If only those

TJs that are built from STGBs are considered – such as in the present case – then a

relationship between the dihedral angles of the GBs and their misorientations can be

obtained.

For the sake of illustration, figure 4.7 depicts a 2-dimensional TJ built from the

intersection of tilt boundaries where the dihedral angles and the angle of orientation

of each crystal with respect to the x-axis are denoted by βi and φi with i ∈ [1, 3],

respectively. Let [ψij] denote the disorientation between grains i and j. Let βij be

the dihedral angles between GBs i and j with i, j ∈ [1, 3]. The relationship between

misorientation and dihedral angles can be expressed with relatively simple geometrical

considerations shown in the following.
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Figure 4.7: Schematic of the TJ geometry.

If the rotation transforming grain m into grain n is denoted as Rmn then:

Rmn =


cos [ψmn] sin [ψmn] 0

− sin [ψmn] cos [ψmn] 0

0 0 1

 (4.9)

In order to avoid the formation of a U -line [45, 46, 47] (discussed in section 2.2.2),

the following constraint must be respected:

I = R31.R23.R12 (4.10)

where I denotes the identity matrix. Combining equations (4.9) and (4.10), the

following condition is obtained:

[ψ12] + [ψ23] + [ψ31] = 2πn with n = 0, 1 (4.11)

As seen in figure 4.7, the orientation of each boundary is given by:

β12 =
[ψ12]

2
+ φ1 (4.12)
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β23 = β12 +
[ψ12]

2
+

[ψ23]

2
(4.13)

β31 = β23 +
[ψ23]

2
+

[ψ31]

2
(4.14)

Therefore the dihedral angles of the boundaries are given by:

β1 = β31 − β23 =
[ψ23] + [ψ31]

2
(4.15)

β3 = β23 − β12 =
[ψ12] + [ψ23]

2
(4.16)

β2 = 2π − (β1 + β3) (4.17)

equations (4.9) to (4.17) show that a TJ built from STGBs essentially has two degrees

of freedom. Henceforth, TJs respecting equations (4.9) to (4.17) will be addressed as

kinematically constrained TJs.

In the case of <001> STGBs, the geometric duality in the misorientation range 0◦

– 90◦ imposes additional constrains on the misorientations. Consider the (001) plane

having a [001] STGB with [100] planes forming the misorientation angle [ψij] between

grains i and j. If the misorientation, [ψij] is greater than 90◦ the corresponding

misorientation between the [010] lattice planes of these grains will be less than 90◦

giving: [
ψ
′

ij

]
= π − [ψij] (4.18)

ψ
′
ij is the true misorientation of the GB.

4.2.2 Compatibility conditions

Interfacial tangential continuity conditions and multi-junction compatibility condi-

tions developed in the appendix C.0.2 are derived here in the specific case of 2-

dimensional TJs constructed using <001> STGBs.

Reconsider the plane edge-wedge model presented at the beginning of this chap-

ter. In an orthonormal reference frame (~e1,~e2,~e3), let the disclination tensor be:

θ = θ33~e3⊗~e3, all components other than θ33 being zero. Recall that the only relevant
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elastic and plastic curvature components are (κe31, κ
e
32) and (κp31, κ

p
32). A plane dislo-

cation distribution involving the edge densities α13 and α23: α13 = α13(x1, x2), α23 =

α23(x1, x2) is consistent with this disclination distribution, in the sense that it allows

satisfying the equilibrium and continuity equations. Furthermore, transport of these

edge dislocations in the plane (~e1,~e2) induces a plane plastic strain state (εp11, ε
p
12, ε

p
22),

with the strain rates (ε̇p11, ε̇
p
12, ε̇

p
22), respectively.

Now, assume that an interface I (shown in figure C.1) is existing between the

crystals (D−, D+), with normal ~n = ~e2 oriented from D− toward D+. Provisionally,

let the surface-dislocation and surface-disclination distributions (α(I),θ(I)) exist in

the interface. Then, specializing equation (C.7), any tangential discontinuity of the

elastic curvature along the interface:
[
κe31

]
is found to be accommodated by a wedge

surface-disclination density θ33(I):

[
κe31

]
= θ33(I) (4.19)

However, if continuous modeling of the boundary is adopted and surface-disclinations

discarded, this relation transforms into the the tangential continuity condition:

[
κe31

]
= 0 (4.20)

According to equation (C.9), a normal discontinuity
[
κe32

]
may also exist:

[
κe32

]
=
[
ψ
]

(4.21)

where
[
ψ
]

sets the disorientation of the crystals (D−, D+) across the interface. Hence,

the latter appears to be representing a tilt boundary. The discontinuity (4.21) implies

that discontinuity of the disclination density θ33 may occur at the interface.

If the reference point is chosen to lie in the interface, such that ~r0 = 0, specializing

equation (C.15) shows that any tangential discontinuity of the elastic strain across

the interface is accommodated by edge surface-dislocations α13(I) and α23(I):

[
εe11

]
= −α13(I) (4.22)
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[
εe21

]
= −α23(I) (4.23)

However, if continuous modeling prevails, equations (4.22) and (4.23) reduce to:

[
εe11

]
= 0 (4.24)[

εe21

]
= 0 (4.25)

Analogous relations are obtained from equation (C.22) for the plastic strain rates:

[
ε̇p11

]
= 0 (4.26)[

ε̇p21

]
= 0 (4.27)

These relations indicate that the plastic shear strain rate and extension rate must

be continuous along the interface. Preventing the non-glide motion of α13 edges

across the interface is sufficient to fulfil equation (4.26). Possible occurrence of a

normal discontinuity of the plastic strain rate tensor is written as:

[
ε̇p22

]
=
[
χ̇
]

(4.28)

where
[
χ̇
]

may be non-zero. This relation implies that discontinuity of the non-glide

motion of α23 edges along the interface, e.g. by climb or atom shuffling, is consistent

with the continuity conditions on the plastic strain rate.

Now, reconsider the 2-dimensional TJ shown in figure 4.7. The disorientation

between grain i and grain j and the orientation angle of their interface Iij with

respect to the ~e1 axis are respectively denoted with
[
ψij
]

and βij (∀(i, j) ∈ {1, 3}),

while the angle between the lattice orientation of grain i and the interface Iij is

taken as
[
ψij
]
. The analysis shown above in equations (4.19) - (4.21) for the generic

interface I is now reproduced in a local orthonormal frame (~u1, ~u2,~e3) for each of

the three interfaces Iij, with (~u1,~e3) as the plane of the interface and ~n = −~u2 as

its normal directed from grain i to grain j. Written in components of the elastic
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curvature tensor in the local frame of the interface Iij, the results corresponding to

equations (4.19) and (4.21) are:

[
κe31

]
ij

= θ33(Iij) (4.29)[
κe32

]
ij

= −
[
ψij
]
, (4.30)

all the other components of the matrices
[
κe
]

being zero. Rotating these matrices to

project equation (C.25) on the common reference frame (~e1,~e2,~e3), it is found that:

∑
ij=12,23,31

[
ψij
]
sinβij + θ33(Iij)cosβij = 0 (4.31)∑

ij=12,23,31

−
[
ψij
]
cosβij + θ33(Iij)sinβij = 0 (4.32)

Along with equations (4.11), equations (4.31) and (4.32) set a system of algebraic

linear equations for the three unknowns
[
ψij
]
. As a first step in the solution of

this system, assume tangential continuity of the elastic curvature at all interfaces:

∀ij, θ33(Iij) = 0, as required in a continuous model. With a non-zero determinant

D = sin(β23− β31) + sin(β31− β12) + sin(β12− β23) = −(sinβ1 + sinβ2 + sinβ3), the

solutions are such that:[
ψ12

]
sinβ3

=

[
ψ23

]
sinβ1

=

[
ψ31

]
sinβ2

=
2π

sinβ1 + sinβ2 + sinβ3

(4.33)

Equation (4.33) is a sine law, formally similar to the Herring equation between

the interfacial free energies and dihedral angles [180]. However, it is not a force

balance equation. Its meaning is that TJs with dihedral angles βi, i ∈ {1, 2, 3} and

disorientations
[
ψij
]

fulfill rotational compatibility. In particular, when all dihedral

angles are βi = 2π/3,∀i ∈ {1, 2, 3}, equation (4.33) leads to: ∀ij,
[
ψij
]

= 2π/3.

This case corresponds to a compatible TJ with three-fold symmetry. TJs respect-

ing these conditions shall henceforth be called ”compatible TJs” or ”TJs respecting

compatibility conditions”. In the context of singular modeling, the algebraic sys-

tem of equations (4.11), (4.31) and (4.32) may be used to obtain information on the
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surface-disclinations needed to accommodate arbitrary disorientations
[
ψij
]

in a TJ

with dihedral angles βi. The disorientations, in the presence of surface-disclinations

at the interfaces, are:

[
ψ12

]
=

2π sin β3 + θ33(I12)(cos β2 − cos β1) + (θ33(I23)− θ33(I31))(1− cos β3)

sinβ1 + sin β2 + sinβ3

(4.34)[
ψ23

]
=

2π sin β1 + θ33(I23)(cos β3 − cos β2) + (θ33(I31)− θ33(I12))(1− cos β1)

sinβ1 + sinβ2 + sinβ3

(4.35)[
ψ31

]
=

2π sin β2 + θ33(I31)(cos β1 − cos β3) + (θ33(I12)− θ33(I23))(1− cos β2)

sin β1 + sin β2 + sin β3

(4.36)

However, inverting these relations for the surface-disclinations is not possible,

because of the involved determinant ∆:

∆ =(cos β3 − cos β2)(cos β1 − cosβ3)(cos β2 − cos β1)

+(1− cos β1)(1− cos β3)(cos β1 − cos β3)

+(1− cos β2)(1− cos β3)(cos β3 − cos β2)

+(1− cos β1)(1− cos β2)(cos β2 − cos β1) (4.37)

is zero. As an example, consider arbitrary variations
[
δψij

]
from the disorientations[

ψij
]

= 2π/3 obtained in the three-fold symmetric TJ. Then, equations (4.34), (4.35)

and (4.36) become:

√
3
[
δψ12

]
= θ33(I23)− θ33(I31) (4.38)

√
3
[
δψ23

]
= θ33(I31)− θ33(I12) (4.39)

√
3
[
δψ31

]
= θ33(I12)− θ33(I23) (4.40)

Clearly, the only differences in surface-disclination densities are obtained from

equations (4.38), (4.39) and (4.40). Hence, from singular modeling analysis, any ar-

bitrary variation from the disorientations in a compatible TJ can be accommodated

by surface-disclinations, but the densities of the latter are known up to a constant.

In continuous modeling, departures from the compatible disorientations are accom-

modated in a finite-width layer across the interface by bulk disclination densities.
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Now, consider the impact of fulfilling the compatibility condition (C.30) on the

normal discontinuities of the plastic strain rates at the TJ. In the local frame of

interface Iij, the relations reflecting tangential continuity and normal discontinuity

of the plastic strain rate tensor, and corresponding to equations (4.26), (4.27) and

(4.28) are:

[
ε̇p11

]
ij

= 0 (4.41)[
ε̇p21

]
ij

= 0 (4.42)[
ε̇p22

]
ij

= −
[
χ̇
]
ij
, (4.43)

where
[
χ̇
]
ij

may be non zero, the other components of the matrices
[
ε̇p
]
ij

being zero

in the local reference frame. Rotating these matrices to project equation (C.30) in

the common reference frame (~e1,~e2,~e3), it is found that:∑
ij=12,23,31

[
ε̇p22

]
ij

sin2 βij = 0 (4.44)∑
ij=12,23,31

[
ε̇p22

]
ij

sin βij cos βij = 0 (4.45)∑
ij=12,23,31

[
ε̇p22

]
ij

cos2 βij = 0. (4.46)

For the sake of convenience, let β12 = 0. Without loss of generality, it is found

that the determinant D of this homogeneous set of algebraic linear equations, where

the unknowns are the three extension rate discontinuities
[
ε̇p22

]
ij
, ij = 12, 23, 31, is

D = sinβ1sinβ2sinβ3. Since D is usually non-zero, the unique solution to equations

(4.44), (4.45) and 4.46) is:
[
ε̇p22

]
ij

= 0, ij = 12, 23, 31. Therefore normal continuity of

the plastic strain rate tensor is generally required at such TJs, in addition to tangential

continuity. In connection with equation (4.28), the interpretation of this result in

terms of dislocation mobility is that non-glide motion along the interfaces is generally

not kinematically allowed at compatible TJs. An exception to this rule is met when

one of the dihedral angles is equal to π, say β2 = π. Then a non-zero solution to

equations (4.44), (4.45) and (4.46) is existing:
[
ε̇p22

]
31

= 0,
[
ε̇p22

]
12

= −
[
ε̇p22

]
23
6= 0,
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which indicates that non-glide motion of dislocations along the straight interface

(I12, I23) is still possible at the TJ (see figure 4.7).

4.2.3 Relationship between TJ geometry and excess energy

Two-dimensional TJs (figure 4.7) are represented by assembling three-GBs according

to their specified dihedral angles. As shown in figure 4.8, each GB is represented

with help of the DSUM. Since GBs reaching the TJ are essentially semi-infinite,

construction of the triple line raises the question of the initial positioning of the

disclinations associated with each GB. Choice is made here to let all GBs start at the

triple line. In the event that the GB length is not an integral multiple of its period,

compensating disclinations are added at the ends of the GBs such as to maintain

the misorientation. An alternative choice would consist of allowing for an offset in

the position of the first disclination of each boundary with respect to the triple line.

While this may reduce the energy of the boundary, the local misorientation across a

GB near the triple line would be changed.

Elastic energy of the TJs is computed via a similar numerical integration technique

used in the case of GBs. First, the elastic energy – containing both elastic strain and

curvature contributions – of a square area centered at the TJ is computed using a 2D

Gauss quadrature integration method (figure 4.8). The domain size is decomposed

into elements of equal size. In the integration area, contributions from all disclination

dipoles -for each GB- are accounted for. Each GB length is larger than the integration

box size. Convergence tests are performed to determine the GB length and the

integration box size yielding accurate values of the triple line energies. Figure 4.9

shows, for a fixed integration area and mesh size, the effect of the GB length on the

elastic energy of a 4◦, −2◦, −2◦ TJ with fixed and equal dihedral angles for a constant

box size of 17.24 nm. The elastic energy converges when the GB length is equal to or

larger than 20 µm. An estimate of the maximum ratio of box size to the GB length
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Figure 4.8: Overall Domain and Integration box used to compute the elastic energy
of triple lines (not to scale). Compensating disclinations are added to maintain the
misorientation of the GBs in the event that the length of the GB is not an integral
multiple of its period.

to reach convergence yields a value of 8.623× 10−4.

Figure 4.9: Evolution of total energy as a function of GB length for a 4◦, −2◦, −2◦

TJ with fixed and equal dihedral angles, keeping the box size constant (17.24 nm).
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Finally, the triple line excess energy is obtained by removing the elastic energy

contribution of each GB from the total energy of the integration box. The former is

obtained by multiplying the elastic energy per unit area of the infinitely long GB by

the GB length.

The evolution of elastic energy with respect to the box size is studied such as to

optimize the size of the integration box. In this case the GB length is kept constant

at 20 µm and the maximum box size that can be chosen is 17.24 nm (in order to avoid

end effects discussed above). The elastic energy and stress field evolution as a function

of box size are shown in figure 4.10. Here, a triple line with GB misorientations 35◦,

50◦, −85◦ is considered and two geometries are studied (1) fixed dihedral angles and,

(2) kinematically constrained by equations (4.9) to (4.17). As shown in figure 4.10

(a) and (c), the elastic energy of the unconstrained triple line appears to be diverging.

This is also emphasized with the contribution of end-effects past box sizes of 17.24 nm.

This is to be expected as incompatibilities are necessarily induced by the fact that the

kinematic constraints are not respected. In the case where the kinematic constraints

are respected, it is found that the computation of the excess elastic energies of triple

lines is far less sensitive to the box size up to a certain point (varies for different TJ

configurations) beyond which the end effects are non-negligible. This point is clearly

marked in the Figure 4.10 (a) and (b). The global minimum in the elastic energy in

the case of 35◦, 50◦, −85◦ kinematically constrained TJ occurs at a box size of 17.24

nm. It is to be noted that the box size leading to a global excess elastic energy at

the triple line is dependent on the triple line geometry and GB misorientations.

As a result of the numerical study, in order to avoid end-effects, the GB length

chosen is 20 µm and a fine mesh of size 0.1 nm (same as that for GBs) is chosen to

achieve higher accuracy. The box size is fixed at 17.24 nm.

In order to understand the influence of the dihedral angles and GB misorientations

on the excess energy of the TJ, three series of computations are performed:
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(a) (b)

(c) (d)

Figure 4.10: (a) Evolution of TJ energy and (c) stress field σxx (MPa) in the case of a
35◦, 50◦, −85◦ TJ with 120◦ dihedral angles, as a function of box size. (b) Evolution of
TJ energy and (d) stress field σxx (MPa) in the case of a 35◦, 50◦, −85◦ kinematically
constrained TJ, as a function of box size. The GB length is kept constant (20 µm)
in all cases. The red line denotes the largest box size beyond which the end effects
influence the elastic energy.
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(1) First, the sole effect of misorientations is studied. The three dihedral angles

are set equal to 120◦ and two of the misorientation angles are varied independently

between −90◦ and 90◦. The last misorientation angle is such that constraint (4.11)

is respected. Clearly, in this case, the relations (4.13) through (4.17) are no longer

respected – this implies that TJs constructed in these first virtual variations of the

parameters should be composed of at least one non-symmetric boundary. Further,

these variations of the misorientations are generally incompatible with either the

Herring relation or the compatibility condition (4.33).

(2) In a second series of computations, the sole effect of dihedral angles is studied.

For this purpose two of the misorientations are equal and the third one, [ψ31], is set

according to the relationship obtained from (4.14). Two of the dihedral angles were

varied independently from 90◦ degree to 150◦ and the third one is such that (4.17)

is respected. Again, these virtual variations of the dihedral angles are generally

incompatible with either the Herring relation or the compatibility condition (4.33).

(3) The last set of computations considers the case where all the kinematic con-

straints (4.13) to (4.17) are respected. Therefore in this case, there are only two

degrees of freedom left. Misorientations [θ12] and [θ23] are varied; recall that by virtue

of (4.15) to (4.17) the TJ dihedral angles are a consequence of the misorientation

angles. As in the previous two cases, these variations of the misorientations are

generally incompatible with either the Herring relation or the compatibility relation

(4.33) except at one point.

4.2.3.1 The effect of misorientation changes on TJ excess energy

Figure 4.11 shows the evolution of total excess elastic energy as a function of GB

misorientations with fixed and equal dihedral angles. Also, for the sake of complete-

ness, figure 4.12 (a)-(b) separate the Cauchy and couple-stress related excess elastic
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energy variations. Additionally, in both figures, TJ geometries respecting the kine-

matic, compatibility and equilibrium conditions of Herring are shown. Here, since

all dihedral angles are equal, the corresponding kinematically constrained TJ coin-

cides with that identified by both Herrings relation and the compatibility condition

on curvature. Additionally, Figure 4.11 delineates GB misorientations corresponding

to special cusp GBs; these are shown with straight lines. The minimum energy and

negative energy points too are clearly identified in figures 4.11 and 4.12. Some combi-

nations of TJs having misorientations equal to nπ/2 (n = 0,1 and 2) between two of

the three associated grains correspond to the same crystal lattice orientation in both

these grains and as such do not form a GB. The blanks in the figures 4.11, 4.12 (a)

and (b) correspond to these TJs.

Observation of Figure 11 shows that the orders of magnitude of the predicted TJ

excess energies are in general agreement with the few measures available to date [128].

It is essential to note in this figure that the compatibility, equilibrium and kinematic

conditions described in the above do not correspond to global energy minima, but

only to a local minimum of energy the total excess energy of the compatible TJ is

predicted to be equal to 607.29 nJ/m from figure 4.12 - in either of figure 4.11 or 4.12.

Note similarly that TJs constructed from two special cusp GBs do not correspond to

local energy minima.

TJs corresponding to very low excess energies have a negative energy contribution

coming from the couple stresses (see figure 4.12(b)). This suggests that couple stresses

tend to stabilize some of the TJ configurations. However, it is to be noted that the TJ

stability is necessarily related with the structure of the connected GBs. As such, if,

during the course of loading, the local GB misorientations evolve in the neighbourhood

of the TJ, the TJ excess energy will also change, and an a priori low energy TJ may,

or may not, become a high energy one. Since they are not located in global energy

minima, it is thus critical to understand their behavior using the dynamic FDDM
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Figure 4.11: Evolution of the total excess elastic energy (nJ/m) with GB misorien-
tation angles in the case of TJs with fixed and equal dihedral angles.

model.

The energy evolutions in both Figure 4.11 and 4.12 clearly exhibit a point symme-

try that is a consequence of the crystal symmetry itself. The global minima indicated

on these maps share the same energy value. The existence of multiple minima is a

consequence of the crystal symmetry. Interestingly though, the central region of the

plot exhibits a six fold symmetry where six regions of high excess energies can be

identified. In attempting to connect the present results with the extension of the

O-lattice theory of Bollmann [44] to the case of TJs two remarks are to be made. As

discussed in the above and in [98], circuit mapping around a TJ and shrinking the
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(a) Ecauchy

(b) Ecouple

Figure 4.12: Evolution of the Cauchy (a) and Couple (b) stresses contribution excess
elastic energy in (nJ/m) with GB misorientation angles in the case of TJs with fixed
and equal dihedral angles.
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circuit to a point yields a null enclosed area, which cannot act as a support either

for dislocation or disclination densities. Therefore, it is to be pointed out that (re-

gardless of the transformation operators used to perform circuit mapping around a

triple line) a claim on the defect character of a triple line necessarily supposes that

the circuit map is reduced to a small but non zero characteristic size ε. Connection

with experimental measures – such as EBSD or HR-EBSD – also necessitates a re-

duction of the circuit map to a small but non-zero size, e.g. the smallest pixel size

that can be detected by the experimental set-up. This experimental constraint is

fortunately consistent with the present continuous approach. The very high-energy

regions found in Figure 4.12 (a) and (b) may be associated to a net TJ disclination

with non zero circuit size. In other words, the surface-disclination defect defined by

equations (4.34), (4.35) and (4.36) is non zero only if ε > 0.

Upon comparing figure 4.12 (a) and (b) it is found that the contributions arising

from the Cauchy stress are two to three orders of magnitude larger than those arising

from couple-stresses. The fact that couple-stress contributions are much lower than

that of Cauchy stress is not surprising as per the results on the relative contributions

of couple-stresses on the GB elastic energy (see Figure 4.3). However, the difference in

order of magnitude of each contribution suggests that significant disclination screening

is occurring at TJs. Secondly, the comparison between Figure 4.12 (a) and (b) also

shows that the couple and Cauchy stress contributions evolve in similar fashions i.e.

the local minima in excess energy associated with contributions from Cauchy stress

corresponds to local minima in the corresponding couple stress contributions.

4.2.3.2 Effects of dihedral angles

In order to study the effect of changes in the dihedral angles on the evolution of excess

elastic energy at fixed misorientation angles-, two reference TJs are used. Note that as

in the previous case, all structures studied do not respect the kinematical constraints
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(4.9) to (4.17). The present study is thus to be regarded as purely parametric. The

first TJ studied is built from GBs with low misorientation 4◦, −2◦, −2◦ and large

period vectors while the second configuration studied corresponds to a TJ resulting

from the intersection of relatively high angle GBs 20◦, −10◦, −10◦ and thus small

period vectors.

Comparison between the two cases allows identification of general trends (if those

exist) associated with the effect of dihedral angle evolutions. Results pertaining to

the evolution of the total energy of the TJ in these simulations are presented in Fig-

ure 4.13 (a) to (b). In Figure 4.14 (a), (b) the evolution of Cauchy and couple-stress

related parts of the excess energy, respectively, as a function of dihedral angles are

shown for the first TJ, i.e. with 4◦, −2◦, −2◦ boundary misorientations. Similarly,

results dedicated to the case of the second TJ considered are shown in Figure 4.14 (c)

and (d). For the sake of clarity each plot is normalized by its absolute maximum. As

in the previous case, TJs respecting kinematic constraints, compatibility conditions

and Herring’s relationship are shown with point symbols, as well as the minima of

the plots. In the present case, as the dihedral angles are left free to vary and the

GB misorientations are fixed and used to determine the unique boundary respect-

ing Herrings relation, the kinematically constrained condition and the compatibility

condition (4.33) will not yield the same point. From Figure 4.13, a comparison of

the relationships between dihedral angles and TJ excess energy for both TJs studied,

clearly shows that no general trend, i.e. independent on the GB misorientations, can

be extrapolated. Considering only the case of Cauchy stresses, it is found that low

dihedral angles correspond to low energy levels in the case of the 4◦, −2◦, −2◦ TJ

while the same dihedral angles yield large values of the TJ excess energy for the large

misorientations.

Note here, that the change in GB structure i.e. leading to an asymmetric boundary

- resulting from a change in the dihedral angles is not accounted for. These changes
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(a) 4◦, −2◦, −2◦ (Etotal)

(b) 20◦, −10◦, −10◦ (Etotal)

Figure 4.13: Normalized total triple line excess energy contributions for the 4◦, −2◦,
−2◦ TJ (a) and 20◦, −10◦, −10◦ TJ (b).

are expected to be minor for (1) small changes in the dihedral angles and (2) long

period vector boundaries such as the 4◦, −2◦, −2◦. Interestingly it is found that
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(a) 4◦, −2◦, −2◦ (Ecauchy) (b) 4◦, −2◦, −2◦ (Ecouple)

(c) 20◦, −10◦, −10◦ (Ecauchy) (d) 20◦, −10◦, −10◦ (Ecouple)

Figure 4.14: Normalized triple line excess energy contributions from the (a,c) Cauchy
and (b,d) couple stresses with respect to the change in the dihedral angles for the 4◦,
−2◦, −2◦ TJ (a,c) and 20◦, −10◦, −10◦ TJ (b,d).

in the case of this TJ, departure from the kinematically constrained configuration –

which, in this case, corresponds to a change in dihedral angles – can lead to higher

excess energy configurations. However, this is not the case for 20◦, −10◦, −10◦ TJ.

In the latter case, deviating away from the kinematically constrained configuration
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lowers the excess energy of the TJ, thus improving its stability.

Comparison between figures 4.14 (b) and (d) shows that in the case of both TJs,

change in dihedral angles produce similar variations in the couple stress contribution

to the excess energy. On the other hand, from figures 4.14 (a) and (c), this is clearly

not the case for the Cauchy stress contribution to the excess energy. In general the

Cauchy stress related part of the excess energy is much larger in magnitude than

that of the couple stress contributions to the elastic energy. Therefore, similarity in

the evolution of the total excess energy (figures 4.13 (a) and (b)) and Cauchy stress

contribution to excess energy is expected.

4.2.3.3 Relationship between TJ excess energy and GB misorientations in the
kinematically constrained case

In the case of kinematically constrained TJs resulting from the intersection of three

STGBs, the evolution of the total excess energy as a function of two of the GB mis-

orientations is shown in figure 4.15. In essence, the coupled effect of misorientations

and dihedral variations is investigated. As in case (a), negative energy points, the

global minimum TJ, TJ respecting Herrings relationship, and TJ respecting the com-

patibility condition are denoted with point symbols. Similar to the previous cases,

dashed lines denote special cusp misorientations. Unlike the case of TJs with fixed

dihedral angles a six-fold symmetry no longer exists for the kinematically constrained

TJs.

It is found here that large variations in the energy levels appear. More inter-

estingly, non negligible areas of the plots exhibit negative excess energies. From

comparison with results obtained in cases (a) and (b) it is clear that this is the result

of the coupling between dihedral angles and GB misorientations. Note however, that

although it is often the case, the excess energy of the kinematically constrained TJ is

not necessarily lower than that of the ”iso” TJ with equal dihedral angles and same

GB misorientation angles. Moreover, it is found here that neither the TJ identified by
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Herrings relationship nor by the compatibility requirements corresponds to the global

minimum energy TJ. Again, this result serves as a strong motivation for studying the

dynamics of these structures.

Figure 4.15: Total excess energy evolution with respect to the GB misorientations
in the case of kinematically constrained TJ.

In order to appreciate the possible role of couple stresses on minimizing TJ energy,

figure 4.16 presents the evolution of the ratio r = |Ecouple| / (|Ecouple|+ |ECauchy|) as a

function of GB misorientations. It is found here that most points with negative excess

energy correspond to large r values between 0.2 and 0.85. Moreover, the regions of

large r values are rather diffuse. Thus, a local change in GB misorientation in these

regions – for example, due to an externally applied load – would not drastically
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change the TJ excess energy. This suggests that couple-stresses may play a key role

in stabilizing TJs.

Figure 4.16: Evolution of the ratio: r = |Ecouple| / (|Ecouple|+ |ECauchy|) with respect
to the GB misorientations.

This work shows that with the adopted TJ construction technique the energy lev-

els vary significantly. First, very large TJ excess energies appear in a significant part

of the geometries considered. These TJs are unlikely to be observed in a material;

they should yield large driving forces associated with plasticity mechanisms resulting

in lower energy local configurations. This is in agreement with molecular dynam-

ics simulations [484]. Second, all TJ geometries with negative excess energies were

identified. In those negative energy cases, the contribution of elastic curvatures (and
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couple stresses) to the total system energy is comparable to that of elastic strains

(and Cauchy stresses). Finally, kinematically admissible TJs, i.e. TJs satisfying the

kinematic constraints and compatibility conditions on the normal discontinuities of

elastic curvature, do not correspond to global but to local minima of the excess energy.

4.3 Discussion

This chapter began with the intention to demonstrate the advantages of using a

disclination based continuous approach at the fine scale by applying it to the case of

<001> STGBs and TJs constructed from these STGBs.

The disclination based approach has provided an important link between atomic

and continuous representations of GBs. The FDDM model facilitated the develop-

ment of a new fully continuous GB representation technique which allowed to recreate

energy vs. misorientation curves for <001> STGBs that gave a close match with ex-

perimentally obtained curves; coming from a continuum based model, such a closeness

is unprecedented without any ad hoc assumptions. The key to this result is in defining

GB core structure using polar disclination densities which induce incompatibilities in

elastic strain and curvature that contribute to the elastic energy. This ensures that

the GB misorientation is preserved. Therefore, the disclination based continuous

representation of GBs preserves both the energy and the misorientation of the GB.

FDDM’s predictive capabilities for GB mechanisms are then tested in the case

of shear coupled GB mechanism for <001> STGBs. The model very accurately

predicts the geometric factor β associated with the motion of these boundaries. An

important feature is highlighted during this study. The transport of defect densities

is strongly dependent on the non-locality associated with the presence of disclinations

at the inter-atomic scale. This is captured through the 5th order elasticity tensors

associated with the cross terms in the elastic constitutive laws. Their importance can

be understood from the fact that the GB motion could be achieved only when the
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terms associated with these elasticity tensors were accounted for. This also highlights

that a couple stress theory is necessary to study the mechanical properties of GBs.

Application to the case of TJs, although in the very specific case of those con-

structed from <001> STGBs in a static setting, have highlighted some important

results. TJs that are thought to be energetically stable based on Herring’s relation-

ship or the newly presented kinematic and compatibility constraints are found to be at

a local and not global minima in the TJ energy vs. GB misorientations maps. Some of

these lower energy configurations have compensating disclinations at the location of

the TJ. These are necessary to maintain the misorientation of the GBs and it is found

that they do not always result in a net increase in the TJ energy. This indicates that

disclination nucleation could be a possible relaxation mechanism. Such a conclusion

is consistent with the recent experimental observations of disclination dipoles along

a Σ9 GB in nc Pd which was bounded on one side by a TJ. A deeper understanding

of disclination nucleation processes could be understood using a dynamic approach

such as the fine scale FDDM. This would also help understand phenomena such as

TJ mobility and its effect on GB motion.

In the next chapter, the meso-scale field disclination and dislocation model is used

to better understand polar disclination nucleation.

4.4 Conclusion

In this chapter a disclination based representation of<001> STGBs and TJs is used to

understand the contribution of strain and curvature incompatibilities to GB energy

and geometry of local microstructure. Incompatible elastic strains that manifest

themselves within the defect cores are found to have the most significant contribution

to the elastic energy. Their contribution to the elastic energy is captured through

the higher order/grade elastic constitutive laws developed in this work. These elastic

laws capture the non-locality associated with the presence of disclinations and play a
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crucial role in modelling dynamics of disclinations and dislocations.

Static simulations were performed to generate TJ energy vs. misorientation maps

for TJs constructured from <001> STGBs. Results revealed that TJ configura-

tions corresponding to Herring’s relationship, respecting kinematic constraints, and

compatibility conditions on elastic strain and curvature, did not belong to a global

minimum. The global minimum excess energy TJ configuration conisted of high

angle GBs. Some TJ configurations were found to have a negative excess energy

contribution. For these triple junctions the elastic curvature, and consequently cou-

ple stress, contribution to the elastic energy was notably large compared to higher

energy TJ configurations. This suggests that elastic curvatures could be generated as

a consequence of relaxation mechanisms possibly through the nucleation of sub-grain

boundaries, new grains, disclinations, twins.
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CHAPTER V

TOWARDS A CRYSTAL PLASTICITY MODEL BEYOND

DISLOCATION SLIP: MESO-SCALE APPLICATIONS TO

FCC POLYCRYSTALS

The aim of this chapter is to understand the contribution of lattice curvature to the

bulk mechanical response of nc materials. To that end, the meso-scale phenomeno-

logical field disclination and dislocation mechanics model (PMFDDM), developed in

section 3.5.1, is applied using using state-of-the-art fast Fourier transform (FFT)

technique to study polycrystals. The chapter is organized as follows: The discus-

sion begins by recollecting a recently developed method to determine the content

of polar dislocation and disclination densities of electron backscattering diffraction

(EBSD) orientation mapping of polycrystalline sample. This technique is used to set

up initial elastic curvature and polar defect densities in the microstructure arising

just from the elastic inhomogeneity. Following this the FFT technique based on con-

tinuous Fourier transforms (CFT) is presented along with the iterative procedure and

algorithm. The advantages and disadvantages of FFT formulation over FEM are dis-

cussed. The PMFDDM FFT model is benchmarked with respect to the conventional

elasto-viscoplastic (EVP) FFT model based on dislocation slip plasticity [239]. This

serves as a motivation for developing a discrete Fourier transform method (DFT).

Then relaxation of nc microstructures is studied by first activating only strain plas-

ticity and then both strain and curvature plasticity, to understand the contribution of

the latter. Finally, the The PMFDDM DFT model is applied to highlight the contri-

butions of curvatures to nc/ufg plasticity. In these simulations, the defects generated

during plasticity are stationary i.e. no defect transport. In this specific case, the
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plastic curvature contribution to plasicity is via grain rotation and/or generation of

geometrically necessary dislocations and disclinations.

5.1 Characterizing the microstructure: interfacial polar de-
fect densities and curvature

In the previous chapter it was seen that at the fine-scale resolution GBs are character-

ized using disclination dipoles. At the meso-scale, spatial averaging of these dipoles

results in a net zero polar disclination density. However, the polar dislocation densi-

ties are non-zero and need to be accounted for. The aim of this section is to present

a numerical technique that can capture the polar dislocation content in the GBs de-

scribed at the meso-scale and can be used as an initial condition to characterize the

microstructure.

To that end, the following approach is taken. Recalling the discussion in section

3.5.1, GBs at the meso scale are modelled as singular surfaces accommodating the

jump in orientation between two grains of the polycrystal. As a result of this ori-

entation jump, incompatible elastic curvatures are generated. These curvatures are

related to the polar dislocation densities through equation 2.98. If these elastic cur-

vatures can be estimated then the nc microstructure can be characterized with polar

dislocations.

In light of the above, the 2-dimensional methodology of Beausir and Fressen-

geas [30] to extract residual polar dislocation and disclination density fields from the

EBSD maps is recalled and extended to a fully 3-dimensional setting. It is assumed

that the lattice orientations are known at all points in the microstructure, possibly

from experimental data, in order to set up the initial conditions. The local lattice

orientations are characterized by a set of Euler angles (φ1, φ, φ2) and the associated

sample-to-crystal rotation matrix R. The disorientation between two points a and b

in the body is given by the couple (~r,∆ψ), where ~r is the axis of rotation and ∆ψ

the disorientation angle around ~r. In the cartesian coordinate system with sample
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reference frame (~e1,~e2,~e3), the difference of elastic rigid body rotation vector ∆ωe

between points a and b satisfies:

∆ψ ~r = ∆ωei ei. (5.1)

If Ra and Rb denote the rotation matrices at points a and b, the disorientation

matrix from point a to b can be calculated as ∆R = Ra
−1 ·Rb. Then, the variation

of elastic rigid body rotation ∆ωei is obtained from [311]:

∆ωei = −eijk∆Rjk∆ψ

2sin(∆ψ)
. (5.2)

As a final step, the elastic curvature tensor component κeij is approximated by the

variation of the elastic rigid body rotation ∆ωei over a distance ∆xj:

κeij =
∆ωei
∆xj

. (5.3)

The initial polar disclination density associated with this elastic curvature field

is then given by equation (2.92). Assuming that the curl of elastic strain tensor at

the initial time is negligible and using equation (2.98), the initial polar dislocation

density associated with elastic curvatures is:

α = −κte + tr(κe)I (5.4)

The elastic curvature contribution to polar dislocation density leads to the gener-

ation of geometrically necessary dislocations which are in addition to those generated

from strain gradients arising due to geometry of loading [120, 123] or internal sources

of plastic inhomogeneity [16].

A consequence of using this methodology is that there is an artificial jump induced

in the elastic curvature fields that results in the generation of disclination densities

that do not have a physical basis. However, this methodology is the best technique

available to account for the contribution of residual curvatures.
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5.2 PMFDDM using a continuous fast Fourier transform
technique

The main purpose behind developing the meso-scale model is to study the influence of

elastic inhomogeneity on disclination evolution and to capture the collective behavior

of grain boundaries on polycrystalline plasicity. Achieving this requires a numerical

technique that is capable of handling the local effects of inhomogeneous plasticity,

elastic heterogeneity, rotational effects coming from both dislocation and disclination

based plasticity, among many other aspects in a realistic time frame. This is difficult

to achieve using an FEM based approach whose computational time complexity is

O(N3), where N is the total number of simulation points. To that end, an FFT

technique is developed as an alternative approach to solve the PMFDDM problem.

The FFT method was originally developed for linear elastic [283, 284], non-linear

elasto-plastic [283, 284] and viscoplastic [271, 272] composites. It was then extended

to linear and non polycrystals where the heterogeneity was associated with the spatial

distribution of grains and orientation dependent mechanical properties [238, 239].

The FFT approach used in this work derives motivation from the elasto-viscoplastic

(EVP) FFT model [239]. The numerical scheme involves solving the ’local problem’

on a representative volume element to obtain the effective response of a polycrystal

subjected to macroscopic geometric quantities and stresses.

In the following, first the compatible solution to the local problem is developed

using continuous Fourier transform representation of Green’s tensor for a hetero-

geneous anisotropic elastic material. Following which the FFT iterative procedure

based on continuous transforms of derivatives is presented. Recall that at meso-scale

incompatibilities are not associated with individual cores representative of defects.

Recalling the argument from section 3.1 centro-symmetry is assumed to be respected

everywhere within the domain, inluding the zones of incompatibility, the terms involv-

ing 5th order elasticity tensors B and D are neglected from the elastic constitutive
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laws. Thus for present purposes the PMFDDM model is developed in the couple

stress theory framework. For the sake of convenience, the superscripts ’s’ and ’D’ for

Cauchy and couple stresses and their respective polarization tensors will henceforth

be dropped.

5.2.1 Modelling framework

The local problem consists of equilibrium equation (3.14), elastic constitutive laws

(3.99) and (3.100), along with boundary and interface conditions. For the present

purposes, it is assumed that all the differently oriented grains are perfectly bonded

i.e. displacements, tractions and moments are continuous across GB interfaces. In

order to treat the discontinuity of these fields at the boundaries, periodic boundary

conditions are imposed. These can be understood in the following way. Let the total

strain (ε(~x)) and curvature (κ(~x)) fields be split into their volume averages E and

K along with fluctuations in local fields ε∗(~x) and κ∗(~x), respectively.

ε(~x) = E + ε∗(~x)

κ(~x) = K + κ∗(~x) (5.5)

The presence of continuous total strain and curvature fields implies that the body

is simply connected and therefore a continuous displacement field (~u(~x)) can be

uniquely defined. This displacement can also be split into a mean field and a fluctu-

ation field ~u∗(~x). By assuming periodic boundary conditions it is assumed that the

fluctuating displacement is ~u∗(~x) is periodic. Furthermore, the total displacement is

continuous everywhere in the domain. In order to satisfy the equilibrium equations

the traction and moment vectors i.e. σ · ~n and M · ~n, respectively, have the same

magnitude but opposite direction for parallel surfaces of the microstructure.

The aforementioned local problem can then be solved in tandem with the general

FFT framework established by Moulinec and Suquet [283, 284]. Let C◦ and A◦

be the 4th order elasticity tensors of a reference linear medium. Recalling that the
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total strain and curvatures are defined as gradients of total displacements (equations

(2.35), (2.38) and (2.46) for compatible elastic strains which are also always valid

for total displacements), the Cauchy and couple stresses at a material point ~x can

be represented by adding and subtracting an appropriate expression involving the

reference elasticity tensors and displacements as,

σij(~x) = σij(~x) + C◦ijkluk,l(~x)− C◦ijkluk,l(~x) (5.6)

Mij(~x) = Mij(~x) +
1

2
A◦ijklekmnun,ml(~x)− 1

2
A◦ijklekmnun,ml(~x) (5.7)

Recall that the tensor C◦ijkl is symmetric over the indices ij and kl and therefore

extracts only the symmetric component of uk,l making the term C◦ijkluk,l equal to

C◦ijklεkl. Defining the Cauchy stress polarization (τij) and couple stress polarization

(µij) tensors as,

τij(~x) = σij(~x)− C◦ijkluk,l(~x) = σij(~x)− C◦ijklεkl(~x) (5.8)

µij(~x) = Mij(~x)− 1

2
A◦ijklekmnun,ml(~x) = Mij(~x)− A◦ijklκkl(~x) (5.9)

the local Cauchy and couple stresses can be redefined as,

σij(~x) = τij(~x) + C◦ijkluk,l(~x) (5.10)

Mij(~x) = µij(~x) +
1

2
A◦ijklekmnun,ml(~x) (5.11)

The polarization tensors indicate the fluctuation, from the volume average, of the

local stress fields. Substituting (5.10) and (5.11) in the equilibrium equation (3.14)

gives

σij,j(~x) +
1

2
eijkMkl,lj(~x) = C◦ijkluk,lj(~x) +

1

2
eijkA

◦
klmnemopup,onlj(~x)

+ τij,j(~x) +
1

2
eijkµkl,lj(~x) = 0 (5.12)

Let a fictitious body force ~f be defined as,

fi(~x) = τij,j(~x) +
1

2
eijkµkl,lj(~x) (5.13)
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then the displacement can be defined as a convolution of the Green’s function G and

the fictitious body force as,

uk(~x) =

∫
Gki(~x− ~x′)fi(~x′)d~x′ (5.14)

Defining F ◦ijlnop = 1
2
eijkA

◦
klmnemop and substituting the displacement by the Green’s

function in the equilibrium equation (5.12) such that for a periodic unit cell with im-

posed average strain E = <ε> and curvature K = <κ> the problem to be solved

is,

C◦ijklGkq,lj(~x− ~x′) + F ◦ijlnopGpq,onlj(~x− ~x′) + δiqδ(~x− ~x′) = 0 (5.15)

where δ is the Dirac delta function and δiq is the Kronecker delta. Replacing the

index p by k, performing the Fourier transform and rearranging the terms gives the

following expression for the Green’s tensor,

Ĝki(~k) = (klkjC
◦
ijkl − koknklkjF ◦ijlnok)−1 (5.16)

where the superscript ∧ represents the Fourier transform of a spatial function. ~k

represents a point in the Fourier space whose magnitude is equal to the angular

frequency. Taking the Fourier transform of the fictitious body force in equation

(5.13) gives,

f̂i(~k) = ikj τ̂ij(~k)− 1

2
eijkklkjµ̂kl(~k) (5.17)

Finally, the compatible local total strain and curvature, are

εij(x) = Eij +
1

2
FT−1

(
ikj

(
Ĝik(~k) + Ĝki(~k)

)
f̂k(~k)

)
(5.18)

κij(x) = Kij −
1

2
eiklFT

−1
(
kjkkĜlm(~k)f̂m(~k)

)
(5.19)

where FT−1 is the inverse Fourier transform operator. Note here that these total

compatible kinematic quantities have the contribution of both elastic and plastic

components as defined by equations (2.64) and (2.90).
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5.2.1.1 Curvature contribution to grain rotation

Prominent meso-scale crystal plasticity models such as the elasto-plastic, viscoplas-

tic, elasto-viscoplastic self consistent and FFT models which are based on a plastic

slip rate formulation account for grain rotation contribution coming from the anti-

symmetric component of the plastic slip tensor (Lp[ij]). This stems from the dislocation

motion under the action of shear stresses which leads to a shape change that culmi-

nates into a reorientation of the grain. The anti-symmetric component of the plastic

slip rate is the plastic rotation tensor that is used to update the Euler angles at each

Fourier point at the end of every time step. These contrbutions are augmented with

the plastic curvature contribution to rotation in the strain gradient plasticity mod-

els. However, plastic rotation contributions arisin from the evolution of disclinations

have never been accounted for. The meso-scale field disclination and dislocation me-

chanics model is able to achieve this using the evolving plastic curvature κ̇p from

equation (3.117). For the sake of simplicity focus is only given to plastic curvature

contributions coming from disclinations; dislocation contributions are neglected.

From the Stokes-Helmholtz decomposition of κ̇p, it can be defined as the sum of

a curl-free component κ̇
p‖
ij and a divergence-free component κ̇p⊥ij . The curl-free com-

ponent κ̇
p‖
ij is the compatible plastic curvature rate which contributes to the rotation

of grains. Recalling that the divergence of curl of any nth ordered tensor is equal

to zero, it can be deduced that the divergence of the plastic curvature rate is equal

to the divergence of the compatible plastic curvature rate (κ̇pij = κ̇
p‖
ij ) with the side

condition that the curl of the compatible plastic curvature rate is zero [134]. Defining

the compatible plastic curvature rate κ̇
p‖
ij as the gradient of a plastic rotation rate,

κ̇‖p = grad ω̇p (5.20)

and taking the divergence of the above equation transforms the gradient operator on

the plastic rotation into a Laplacian (κ̇
p‖
ij,j = ω̇pi,kk). Taking its Fourier transform and
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after performing some algebra gives the expression for the plastic rotation in the real

space as,

ω̇pi = FT−1

(
−
iξj ˆ̇κ

p
ij(ξ)

ξ2

)
(5.21)

The plastic rotation vector can be defined in terms of a second order tensor as

ωp = −X : ~ωp. This second order compatible plastic rotation rate along with the

rotation contribution from plastic slip rate is then subtracted from the total rotation

(having contributions from both local and macro rotations) to obtain the compatible

elastic rotation (ωe‖) which contributes to grain rotation.

5.2.2 Numerical scheme

The FFT iterative procedure employs an Euler implicit time discretization scheme to

solve the PMFDDM FFT problem. Using equations (2.64), (2.90), (3.25) and (3.26)

and recalling that contributions from terms involving elasticity tensors B and D are

neglected, the Cauchy and couple stresses at a material point ~x at time t + ∆t are

expressed as:

σ(t+∆t)(~x) = C(~x) :
(
ε(t+∆t)(~x)− εp(t)(~x)− ε̇p(t+∆t)(~x,σ(t+∆t))∆t

)
(5.22)

M (t+∆t)(~x) = A(~x) :
(
κ(t+∆t)(~x)− κp(t)(~x)− κ̇p(t+∆t)(~x,M (t+∆t))∆t

)
(5.23)

At the zeroeth time step, the elastic curvature obtained from the 3D technique

based on EBSD orientation mapping (see section 5.1) is used to provide an initial

guess for the couple stress tensor. The initial total curvature is assumed to be zero

i.e. the microstructure is in an undeformed state. Therefore from equation (2.90) the

accumulated local plastic curvature is assumed equal to the negative of the instanta-

neous elastic curvature. This provides an estimate for the polar defect content in the

medium. If, however, the initial elastic curvature were not to be estimated then the

initial defect densities and the guess for couple stress would be equal to zero.
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The solution procedure which follows the above step is similar to the one proposed

in the EVP FFT model of Lebensohn et al. [239]. The polarization tensors τ and

µ are respective functions of ε and κ and require an iterative approach to obtain

a solution. Let e(i), κ̃(i), λ(i) and φ(i) be the guesses for strain, curvature, Cauchy

stress, and couple stress, respectively, at the iteration i. The polarization tensors at

this iteration are given as,

τ
(i)
ij (~x) = σ

(i)
ij (~x)− Co

ijkle
(i)
kl (~x) (5.24)

µ
(i)
ij (~x) = M

(i)
ij (~x)− Aoijklκ̃

(i)
kl (~x) (5.25)

Green’s tensor and the i + 1 guess for the fictive body force in Fourier space are

then computed using equations (E.17) and (5.17). These equations along with the

polarization tensors in equations (5.24) and (5.25), the (i+ 1) guesses for compatible

total strain and curvature are:

e
(i+1)
ij (x) = Eij +

1

2
FT−1

(
ikj

(
Ĝik(k) + Ĝki(k)

)
f̂

(i)
k (k)

)
(5.26)

κ̃
(i+1)
ij (x) = Kij −

1

2
eiklFT

−1
(
kjkkĜlm(k)f̂ (i)

m (k)
)

(5.27)

The stresses can then be computed using equations (5.22) and (5.23) where the

plastic strain and curvature rates are computed using equations (3.114) and (3.117).

However, such a direct computation does not ensure that the constitutively obtained

stresses fulfil the equilibrium conditions, thus taking a lot of iterations to converge.

In order to achieve a faster convergence, an augmented Lagrangian scheme [271,

272] can be employed. The original scheme proposed in the work of Michel et al.

adjusts two strain and stress fields such that one strain field is compatible (similar

to the one in equation (5.18) but in classical elasticity) and one stress field satisfies

equilibrium (only the components related to Cauchy stresses in equation (5.12)). The

other strain and stress fields are constitutively related and the iterative procedure

is designed such that the two strains and the two stresses converge to each other.
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Following convergence, the method delivers a compatible strain field constitutively

related to an equilibrated stress field. In the following, an extension of the augmented

Lagrangian technique is employed where two of each: curvature, strain, Cauchy stress,

and couple stress fields are utilized to achieve accelerated convergence.

The procedure involves first transforming the 3 x 3 Cauchy stress and strain

tensors and the 3 x 3 x 3 x 3 stiffness tensor C into 6, 6 and 6 x 6 tensors, respectively,

using the ”Kelvin notation”. This notation was introduced in the early work of

Thompson [403] and is used as an alternative approach to the Voigt formulation

[20]. The Kelvin decomposition allows to separate the stress and strain tensors into

5 deviatoric and 1 hydrostatic components [241] while preserving the norm of the

stiffness, Cauchy and strain tensors as well as the energy of the system [88]. The 6

eigenvectors associated with the Kelvin decomposition are formulated in the form of 6

basis tensors as shown in the appendix B.1.1. An extension to the Kelvin formulation

is developed for the case of couple stress, curvature and stiffness tensor A which due

to the asymmetry of the couple stress and curvature tensor will be of the shape 9, 9,

and 9 x 9, respectively. The 9 basis tensors are derived in the Appendix B.1.1.

For each material point ~x, the enhanced augmented Lagrangian scheme requires

minimizing the residual Ri:

Ri(σ
(i+1),M (i+1))(~x) = σ

(i+1,j)
k (~x) + C0

klε
(i+1)
l (~x)− λ(i)

k (~x)− C0
kle

(i+1)
l (~x); k = 1, 6

Rk(T
(i+1),M (i+1))(~x)

= M
(i+1,j)
k (~x) + A0

klκ
(i+1)
l (~x)− µ(i)

k (~x)− A0
klκ̃

(i+1)
l (~x); k = 7, 15 (5.28)

These 15 non-linear equations are solved using the Newton-Raphson iterative pro-

cedure as follows:

σ
(i+1,j+1)
k = σ

(i+1,j)
k −

[
∂Rk

∂σl

∣∣∣∣
σ(i+1,j),M (i+1,j)

]−1

Rl(σ
(i+1,j),M (i+1,j)) (5.29)

M
(i+1,j+1)
k = M

(i+1,j)
k −

[
∂Rk

∂Ml

∣∣∣∣
σ(i+1,j),M (i+1,j)

]−1

Rl(σ
(i+1,j),M (i+1,j)) (5.30)
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where the residual computed at the (j + 1) iteration of the Newton-Raphson loop is

used to obtain the (j+1) guess for the stress. The inverse term is the Jacobian which

is a 15 × 15 tensor. Rearranging equations (5.22) and (5.23) in terms of the total

strain and curvature and taking their derivatives with respect to Cauchy and couple

stresses gives the following expression for the Jacobian:

∂Rk

∂Tl

∣∣∣∣
T i+1,j ,M i+1,j

= δkl + C0
kmC

−1
ml + C0

km

∂ε̇pm
∂Tl

∆t ; k = 1− 6 , l = 1− 6

∂Rk

∂Tl

∣∣∣∣
T i+1,j ,M i+1,j

= 0 ; k = 7− 15 , l = 1− 6

∂Rk

∂Ml

∣∣∣∣
T i+1,j ,M i+1,j

= 0 ; k = 1− 6 , l = 7− 15

∂Rk

∂Ml

∣∣∣∣
T i+1,j ,M i+1,j

= δkl + A0
kmA

−1
ml + A0

km

∂κ̇pm
∂Ml

∆t ; k = 7− 15 , l = 7− 15 (5.31)

where the partial derivative terms associated with ∆t are the tangent compliance of

the viscoplastic response ∂ε̇pm
∂σl

from equation (3.114) and the plastic curvature compli-

ance ∂κ̇pm
∂Ml

from equation (3.117). The critical resolved shear stress (CRSS) τ0, which

is a function of the stress dependent plastic strain, is taken as a function of stress

τ s0 (εp(σ)) = τ s0 (σ). On the other hand, M0 is taken as a constant and :

∂ε̇pi
∂σj
≈ nγ̇0

N∑
s=1

ms
im

s
j

τ s0 (σ(i+1,j))

(
|ms · σ|
τ s0 (σ(i+1,j))

)n−1

(5.32)

∂κ̇pi
∂Mj

=
κ̇0‖M ‖n−3

Mn
0

(
(n− 1)MjMi + δij‖M ‖2) (5.33)

where ms is the Schmid tensor Ps in Kelvin notation, subscripts i, j = 1, . . . , 9 . For

the sake of simplicity, the plastic curvature compliance (5.33) can be approximated

as a diagonal matrix, as follows:

∂κ̇pi
∂Mj

≈ nκ̇0

Mn
0

‖M ‖n−1δij (5.34)

Once convergence is achieved, the new guess for auxiliary Cauchy and couple stress

fields is given by,

λ(i+1)(~x) = λ(i)(~x) +C0 :
(
e(i+1)(~x)− ε(i+1)(~x)

)
(5.35)
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φ(i+1)(~x) = φ(i)(~x) +A0 :
(
κ̃(i+1)(~x)− κ(i+1)(~x)

)
(5.36)

The iterations are repeated until normalized average differences between σ(~x)

and λ(~x), M(~x) and φ(~x), ε(~x) and e(~x), and κ(~x) and κ̃(~x), are smaller than a

threshold. This ensures satisfaction of compatibility and equilibrium conditions, up

to the threshold.

Higher order boundary conditions in the form of macroscopic total strain and

curvature rate are imposed on the periodic microstructure such that at time step

t+ 1 the macroscopic strain and curvature are given as,

E
(t+1)
ij = E

(t)
ij + Ėij∆t (5.37)

K
(t+1)
ij = K

(t)
ij + K̇ij∆t (5.38)

In addition to these, macroscopic Cauchy Σ and couple Φ stresses can be also be

imposed. These boundary conditions allow for the simulation of pure tension/compression,

pure shear, pure bending, pure torsion, creep (in tension, bending or torsion) and

complex loading scenarii. Prescribing the macroscopic stresses requires modifying

the macroscopic strain and curvature at each iteration i+ 1 by the following:

E
(t+1,i+1)
ij = E

(t+1,i)
ij + Co−1

ijkl α
kl
(

Σkl −
〈
λ

(i+1)
kl (x)

〉)
Ėij∆t (5.39)

K
(t+1,i+1)
ij = K

(t+1,i)
ij + Ao−1

ijklβ
kl
(

Φkl −
〈
φ

(i+1)
kl (x)

〉)
K̇ij∆t (5.40)

where αkl = 1 and βkl = 1 if components Σkl and Φkl are imposed, respectively, and

zero otherwise.

The FFT technique has the following advantages and disadvantages: (i) It avoids

the difficulties with meshing by solving the unit cell (local) problem. (ii) It is com-

putationally faster than FEM; its computational cost is O(N log(N)) which is much

lower than the O(N3) of FEM based techniques. (iv) It uses a regularized periodic

grid and its present form can be only applied to RVEs (iii) It is an N-site formu-

lation, unlike self-consistent schemes [240], and does not require homogenization of
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the RVE. Therefore, it provides an exact solution (within the bounds imposed by the

discretization and the error allowed by the iterative procedure) to the combined prob-

lem involving equilibrium and compatibility conditions such that the final compatible

strain and equilibrated stress satisfy the constitutive relationship. (v) The algorithm

is based on piecewise continuous derivatives of kinematic quantities transformed in

Fourier space and therefore assumes that the displacements, strains, curvatures and

their derivatives are continuous everywhere in the domain. In its present form, it

suffers from the Gibbs phenomenon i.e. it cannot handle jumps in the kinematic

fields. Although this may be treated by using discrete finite differences instead of

continuous derivatives, as shown in a recent work by Berbenni et al. [34]. Figure 5.1

shows the flowchart of the PMFDDM interative procedure described above.

Table 6: Legend for flowchart 1

NOTATION DESCRIPTION

E Macro strain

K Macro curvature

∆E = Ė∆t Macro strain increment

∆K = K̇∆t Macro curvature increment

t Previous time step

t+ ∆t Current time step

Ntot Total number of time steps

ε Threshold value for error

ERR Normalized error

Niter Maximum number of iterations

∆K Macro curvature increment

re, im Real and imaginary components in Fourier space

Continued on next page
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Table 6 – Continued from previous page

NOTATION DESCRIPTION

ξi Fourier space vector in component form

σerr,M err Threshold errors in Cauchy and couple stresses

A,B Normalized errors in Cauchy and couple stresses

wgt volumetric weight function

VM VM component

BCs Boundary conditions

EA Euler Angles

N1, N2, N3 Fourier points

Figure 5.1: Flowchart of the PMFDDM FFT algorithm. Dashed colored boxes
correspond to colored expressions in algorithm 1 shown in appendix G.
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5.3 Capturing curvature contribution to polycrystalline re-
sponse: strategy

The purpose of this section is to devise simulations that will demonstrate the con-

ribution of residual curvatures to nc plastic response and to the evolution of polar

dislocation and disclination densities. In the following, the simulation microstructure,

boundary conditions and the different initial curvature cases studied to achieve this

objective are described. Using these, the case studies to be performed are discussed.

5.3.1 Microstructures: elastic/plastic properties and geometry

The unit cell is attributed material properties of FCC Cu at room temperature. For

the Cauchy stress elastic constitutive relationship, the elastic constants (in Voigt no-

tation) are: C11 = 170.2 GPa, C12 = 114.9 GPa and C44 = 61.0 GPa [371, 239].

For Cauchy stress visco-plastic constitutive relationship, the reference plastic shear

rate is taken as γ̇0 = 0.1/sec and the power exponent is n = 10. FCC Cu has 12

111<110> slip systems available and the Schmid’s tensor is used to obtain the ac-

tive slip systems. The CRSS is chosen according to the average grain size of the

microstructure. An elastic-perfectly plastic response is modelled, therefore the CRSS

remains constant during the entire simulation. For couple stress elastic constitu-

tive response, the elasticity tensor A in the Voigt form has the diagonal values of

Gb2 = 3.96653× 10−9N . This is the form of elastic constant proposed in the work of

Kröner [218]. For couple stress plastic constitutive relationship, the reference plastic

curvature is taken as κ̇ = 100/micron, threshold couple stress as M0 = 10−7 N//µm

and the power exponent as n = 10. The threshold couple stress remains constant

throughout the simulation.

Two types of microstructures are studied: (a) polycrystalline RVE with 100 ran-

domly oriented grains and (b) bicrystal. The first type, generated using Voronoi
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tessellations, is shown in figure 5.2. The kinematic and stress fields of the microstruc-

ture are studied along the vertical line passing through the center of the cross-sectional

area shown. The normal to this cross section is along the z axis. Points of interest

are the intersections of the line with the interfaces. These are indicated by numbers

shown in the figure. From a first glance there are 6 grains traversed by the line. A

closer look reveals that there are other grains that emerge at the interfaces which

have only one voxel belonging to the microstructure cross section. These could have

an interesting consequence on the shape of the kinematic and stress profiles drawn.

Identifying these individual voxels as protrusions from other grains, the total num-

ber of grains traversed by the line then increases to 9. These results in a total of

8 different interfaces traversed by the line. Further inspection of the cross-section

reveals that the line follows the interface between points 1 and 2, making this zone

a potential site of interest. Therefore the same interface is assigned two numbers.

Finally, at point number 10, the line encounters a triple junction between grains that

have already formed interfaces that were previously traversed by the line. This triple

junction is of a lot of interest and is also assigned a number. Therefore, the total

number of interface identifiers is now 10.

The second type of microstructure studied is the bicrystal. Two types of bicrystals

are studied. The first one being a 2-dimensional bicrystal having tilt misorientation

of 5◦ about the z axis, henceforth known as bicrystal-a, and the second one being a

3-dimensional columnar structure with randomly oriented grains, henceforth known

as bicrystal-b. In both the cases, the grains are of the same size. Figure 5.3 shows

the two bicrystals with their Euler angles.

In both these cases, the unit cell is cubic shaped and discretized using a 64×64×64

grid (the same discretization will be adopted for all the simulations in this section).

The ”fourn” subroutine from the ”Numerical Recipes 77” is used to solve the FFT

problem. It requires the Fourier points to be in the order of 2n;n ∈ Z. A good
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Figure 5.2: Simulated microstructure with 100 randomly oriented grains and 64 × 64
× 64 Fourier points. The colors represent different grains. The stress and kinematic
fields are plotted along the line passing through the center of the microstructure in
the y direction. The numbers are interface identifiers indicating the positions of the
intersection of the line with an interface.

compromise between accuracy and computation time is obtained using 26 = 64 Fourier

points in each direction.
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(a) (b)

(c) (d)

Figure 5.3: Microstructure of (a) 2-dimensional and (c) 3-dimensional columnar
bicrystal with respective GB (b) misorientation of 5◦ about z−axis and (d) randomly
assigned Euler angles in degrees, plotted along the lines shown in (a) and (c).

5.3.2 Characterizing microstructures with initial curvatures

Three cases of GBs are considered: (a) the first case where the GB interface is in-

finitesimally thin and forms between two Fourier points belonging to two different

grains. This case is identified as t0. (b) The second case where the immediate neigh-

bor Fourier points belonging to different grains are considered as part of the grain

boundary giving it a finite thickness whose maximum value is equal to δ. This case

is identified as t1. (c) In the third case, the second neighbor Fourier points are also

considered as part of the grain boundary with its largest thickness equal to 3δ. This

case is identified as t2. All the three cases are illustrated in figure 5.4.
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Figure 5.4: 2-dimensional illustration of an infinitesimally thin t0 (in red), thickness
t1 = δ (in green), and thickness t2 = 3δ (in blue), interface in the discretized Fourier
grid consisting of evenly spaced Fourier points.

The GBs are not identified as separate grains but are characterized using residual

elastic curvatures arising due to the disorientation of grains (refer to section 5.1). In

the second case, the elastic curvatures are assigned values based on the difference in

elastic rotations across the ”interface”. In the third case, the second neighbor Fourier

points are assigned elastic curvature values that are same as the first neighbor. If

there is more than one GB in the vicinity of a particular Fourier point then the

elastic curvatures generated from both the boundaries are added. The GB volume

fraction is the computed as the ratio of number of Fourier points having a non-zero

residual elastic curvature, at the beginning of the simulation, to the total number of

Fourier points in the domain. For the microstructure considered, the volume fraction

occupied by the so-formed GBs in the three cases are 0 % (for t0), 31 % (for t1), and

55 % (for t2), respectively.

Figure 5.5 shows the initial curvature components κ12 and κ32 plotted along the

line shown in figure 5.2 for the polycrystalline case assuming an average grain size

10 nm. This is achieved by taking an inter Fourier point spacing of 0.7253 nm. This

curvature is computed assuming first a thickness of t1 and then thickness - t2 as shown
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in figure 5.4. GB interface thickness may be overestimated in the second case but

the idea here is to highlight the influence of this initial curvature on the local stress

response. The configuration without any initial curvature shall be referred to as t0.

It is important to note that in the FFT framework the notion of length scale

effect on Cauchy stresses is only introduced through the PMFDDM approach. In

the conventional EVP FFT, the strains are dimensionless and both the strains and

elastic constants of the medium do not scale with grain size. Therefore the Cauchy

stresses also do not scale with grain size. Curvatures and couple stresses have an

inherent length scale associated to them. This helps characterize the Cauchy stresses

with respect to different grain sizes in the extended EVP framework. This is the first

time that such a length scale effect on Cauchy stress evolution has been shown using

either the self-consistent or FFT based polycrystalline models.

(a) κ12 (1/µm) (b) κ32 (1/µm)

Figure 5.5: Plots over line for initial estimates of (a) κ12 (1/µm) and (b) κ32 (1/µm)
for 10 nm polycrystal with GB thickness t1 (in green) and t2 (in red). Blue lines
indicate the location of interfaces and the numbers in blue correspond to interface
identifiers from figure 5.2.

As seen in section 5.1, initial curvatures are computed using a finite difference

scheme. Therefore the sharply pointed crests and troughs are not numerical overshoot

but are a result of the interpolation between discrete Fourier points. The initial

curvatures form only in the vicinity of the interfaces. Orders of magnitude of the
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curvatures in both cases are justified due to the very small value of Fourier grid spacing

(0.7253 nm). The magnitude of curvatures are much higher for microstructure with

t2 GB thickness compared to the one with t1 GB thickness. This is to be expected

from the construction scheme associated with the t2 approach.

Figure 5.6 shows plot over the line for the norm of initial polar dislocation and

disclination densities (
√
αijαij) and (

√
θijθij), respectively. Note here that the initial

Figure 5.6: Plot over line for norm of initial polar dislocation density (
√
αijαij in

1/µm) for a 10 nm polycrystal configuration with GB initial curvature thickness t1
(in green) and t2 (in red).

polar dislocation density has a contribution coming from both compatible and incom-

patible initial elastic curvatures. The norm of initial polar dislocation density is the

same as the norm of the initial elastic curvature. From both the plots, it can be seen

that the defect content is higher in the case of t2 boundary which is to be expected.

Figure 5.7 shows plot over the same line for the norm (
√
MijMij) of the initial

couple stress generated due to the initial curvatures. Recall that the magnitude of A

is taken as Gb2. Intra-granular couple stresses are seen to be generated, more in the

case of GB thickness t2 than t1. These arise due to the proximity of Fourier points
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Figure 5.7: Plots over line for the norm (
√
MijMij) of the initial couple stress

generated due to the initial elastic curvatures for 10 nm polycrystal with GB thickness
t1 (in green) and t2 (in red). Blue lines indicate the location of interfaces traversed by
the line shown in figure 5.2 and the numbers in blue correspond to interface identifiers
from figure 5.2.

under consideration to other interfaces that do not lie in the plane of the line along

which the couple stress norm are plotted.

5.3.3 Boundary conditions

Two types of boundary conditions are considered: (a) uniaxial tension along the

y direction and (b) relaxation by holding the microstructure at constant imposed

strain of 0, also along the y direction. In the first case, the prescribed applied strain

component Ė22 = 1s−1 along with no shear Ė12 = Ė13 = Ė23 = 0. Surfaces normal to

x and z directions are traction free, therefore macroscopic Cauchy stress components

Σ11 = Σ33 = 0. During a tensile test, the surfaces normal to the y direction are

allowed to bend. Therefore, the macro couple stress components Φ12 and Φ32 are

imposed to zero. The remaining surfaces are not allowed to bend and no surface is

allowed to twist. Therefore, the macro curvature rates K̇11, K̇13, K̇21, K̇22, K̇31 and

K̇33 are imposed to zero.
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In the second case, the microstructure is held at zero strain along the y direc-

tion to study the relaxation of stresses generated from initial curvatures. The same

macroscopic strain, Cauchy stress, curvature, and couple stress boundary conditions

are imposed but with Ė22 = 0.

5.3.4 Case studies

The case studies are divided into two parts: (a) the first part is dedicated to validating

the PMFDDM model and the methodology to compute initial curvatures described

in section 5.1. (b) the second part is dedicated to understanding the contributions of

these initial curvatures on the local and macroscopic response of nc microstructures.

In order to validate the PMFDDM FFT numerical scheme, the model is bench-

marked against the EVP FFT model. Since the latter cannot account for curvatures,

therefore the benchmarking is done using the t0 microstructure. Next, to validate

the initial curvature methodology, the PMFDDM FFT model is applied to simulate

uniaxial tensile loading in the bicrystalline case characterized with initial curvatures.

As mentioned in section 5.1, the discontinuity in these curvatures results in unwanted

oscillations (Gibbs phenomenon) in the kinematic and stress fields computed using

the PMFDDM FFT approach. Corrections to these oscillations are then proposed

using a DFT (discrete Fourier transform) scheme resulting in the PMFDDM DFT

model.

Next, the PMFDDM DFT model along with initial curvatures is applied to study

the local and macroscopic response of nc microstructures. The first step is to highlight

the contribution of initial curvatures on the elastic response of nc microstructures.

This will provide a deep understanding on the evolution of local stresses generated

due to the presence of these initial curvatures. As shall be seen later, instantaneous

Cauchy and couple stresses are generated in the presence of these initial curvatures.
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The next set of simulations are performed to understand the role of plastic curva-

tures in relaxing these initial stresses; the microstructure with initial curvatures is

relaxed in one simulation via plastic strains, and second via both plastic strains and

curvatures. This opens up a question highlighting the need to parametrize the plastic

curvatures. In the final set of simulations, strain based plastic deformation of nc mi-

crostructure with initial curvatures is simulated to highlight latter’s role in predicting

the breakdown in Hall-Petch law. Table 7 summarizes all the simulations discussed

in this section.

Table 7: Simulations to highlight the contribution of

residual curvatures on the local and bulk mechanical re-

sponse of nc materials

Test Description Microstructure

(1) Benchmarking Comparison with EVP FFT Polycrystalline, t0

PMFDDM FFT Coarse-grained

(2) Benchmarking Validation of initial bicrystal-a, t0

PMFDDM FFT with curvature methodology bicrystal-b, t2

initial curvature Correcting oscillations

(3) Pure elastic Understand role of initial Polycrystalline,

loading curvature, uniaxial tension t0, t1, t2

(4) Relaxation of Role of initial curvature and Polycrystalline,

initial Cauchy (a) Strain plasticity t2

and couple (b) Combined strain and

stresses curvature plasticity

(5) Elasticity and Understand role of initial Polycrystalline,

strain plasticity curvature, uniaxial tension t0, t1, t2
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5.4 Benchmarking and validation of PMFDDM FFT with
initial curvatures

5.4.1 Comparison with EVP FFT

The first simulation performed is to benchmark the PMFDDM FFT model with

respect to the EVP FFT model. To that end, the macroscopic response predicted by

PMFDDM FFT model is compared with that predicted by the EVP FFT model of

Lebensohn et al. [239] for a coarse-grained microstructure.

In order to facilitate the comparison, the microstructure is subjected to uniax-

ial tension along the y direction up to 0.1% strain in 40 steps of 0.000025. Initial

curvatures, and consequently polar dislocation densities, are set to zero. The mi-

crostructure is allowed to deform plastically only via dislocation slip. The Hall-Petch

relationship is used to estimate the CRSS; for a coarse-grained microstructure this

relationship works well. The Hall-Petch relationship [170, 317] which linearly relates

a material’s yield strength to the inverse of the square of its average grain size:

σY = σ0 +
ky√
dg

(5.41)

where σY , σ0, ky and dg. The Hall-Petch constants for FCC Cu, σ0 = 25MPa and

ky = 0.11, are obtained from the work of Smith [375]. For a grain size of 100µm, the

yield strength obtained is 36 MPa. From here the CRSS is assigned its maximum

possible value of τ s0 = 18 MPa and is kept constant to obtain an elastic perfectly

plastic response i.e. no hardening (H = 0). To obtain this average grain size, the

inter-Fourier point spacing is taken as 7.253 µm.

The VM Cauchy stress vs VM strain response for this coarse-grained microstruc-

ture is plotted in figure 5.8. An excellent match is obtained between the two meth-

ods for the macroscopic response. This is to be expected because for the length

scale resolution (inter Fourier point spacing 7.253 µm) the local curvatures, which
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Figure 5.8: VM Cauchy stress vs. VM strain curve for a coarse grained microstruc-
ture with average grain size 100 µm subjected to uniaxial tension

are elastic in nature, and local couple stresses are not significant enough to af-

fect the average local Cauchy stress response. In order to better understand this

consider the couple stress field M21 in figure 5.9 plotted along the line from fig-

ure 5.2. The order of magnitude of couple stress M21 is ≈ 10−13 N/µm. The re-

Figure 5.9: Local couple stress component M21 (N/µm) generated from PMFDDM
FFT at 0.1% strain along the line shown in figure 5.2
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maining couple stress components (not shown here) are also in the same order of

magnitude. To understand the insignificance of the couple stress contribution to

local Cauchy stresses, consider the first equilibrium equation in component form:

σ11,1 + σ12,2 + σ13,3 + 0.5(M31,12 +M32,22 +M33,32)− 0.5(M21,13 +M22,23 +M23,33). For

an inter Fourier point spacing of 7.253 µm, the order of couple stress contribution to

the equilibrium can be approximated as 10−13/(7.2532) N/µm3 ≈ 1.9× 10−15N/µm3

as opposed to ≈ 10−7N/µm3 coming from the Cauchy stress components; the couple

stress contribution is 8 orders of magnitude lower than Cauchy stresses. These are

therefore not sufficient to equilibrate Cauchy stresses.

Other simulations are also performed for with larger values of the critical resolved

shear stress (84 MPa and 330 MPa) to mimic smaller average grain sizes (600 nm and

30 nm, respectively). In all the cases a very good match between the VM Cauchy

stress vs VM strain is obtained.

5.4.2 Gibbs phenomenon: correction using DFT

The couple stress plot-over-line shown in figure 5.9 reveals a steep change in the

stress field with sharp pointed peaks close to the distance 20 (x 7.253 microns).

These could represent the orientation dependence of the couple stresses across two

highly misoriented grains or could be an overestimation of the couple stress field due

to the fluctuations induced from Gibbs phenomenon. The purpose of this section is

to identify the Gibbs phenomenon and propose corrections for it. Achieving this will

provide the necessary validation for the PMFDDM FFT methdology combined with

initial curvatures.

Gibbs phenomenon occurs in treating a discontinuous field using a finite series

approximation of a continuous Fourier transform. It involves an overshoot in the

value of the Fourier transform of a discontinuous field. Furthermore, this overshoot

does not fade away with an increase in the frequency i.e. increase in number of Fourier
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points, but converges to a non-zero value. In the continuous FFT models (both EVP

and PMFDDM), the methodology ensures that the compatible displacement fields

are continuous everywhere in the domain. This should imply that the derivatives

of the displacement fields are also continuous everywhere. Howerver, due to the

heterogeneous elasticity arising from different orientation of grains, the compatible

strain and rigid body rotation fields are discontinuous across the interfaces. Taking

the gradients of these discontinuous compatible fields using the continuous FFT,

as is done in the case of PMFDDM FFT to the rotation field in order to get the

compatible curvature fields, would induce oscillations in the vicinity of interfaces.

In the present case the magnitude of the curvatures, and hence couple stresses is

not significant enough to affect the Cauchy stress response. However, when initial

curvatures are considered, it is possible that curvatures and couple stresses could

significantly affect the Cauchy stress response. This effect could be magnified due to

the Gibbs phenomenon.

In order to test and quantify if the Gibbs phenomenon is encountered when im-

plementing the PMFDDM FFT model, the two bicrystalline cases described in figure

5.3 are considered. This is the second test described in table 7. The two bicrystals

considered are: (1) bicrystal-a with tilt misorientation of 5◦ and t0 configuration, and

(2) bicrystal-b with random orientation of grains with t2 configuration. In both the

cases, the inter Fourier point spacing in each direction is taken as 0.7253 nm in or-

der to appreciate the effect of curvature and couple stress oscillations on the Cauchy

stresses. The test conditions are the same as in the studies done in previous section

for microstructures undergoing uniaxial tension.

For bicrystal-a, the curvature and couple stress components, κ32 and M32 respec-

tively, are shown in figure 5.10. The Gibbs phenomenon is clearly visible in these

plots. There is an apparent overshoot of the couple stress and curvature at the in-

terface which results in ripples in these fields deep within the two crystals. At the
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first time step for the simulations, the curvature field ripples are generated which

affect the equilibrium solution of the couple stresses. The couple stresses in turn

induce oscillations in the couple stress polarization fields which enter the compatible

solution of the strain fields resulting into ripples in the strain field. This strain field

is then used to compute the Cauchy stress field that inherits these oscillations. The

effect of these ripples could be diminished by taking a larger number of Fourier points

but the overshooting values converge to a non-zero constant with increasing Fourier

points and still pose a problem. From a different aspect, reducing the value of A

by one order of magnitude reduces the magnitude of couple stresses which in turn

reduces the amplitude of ripples in the Cauchy stress. However, this does not affect

the relative amplitude of the ripples in curvature and couple stresses.

(a) κ32 (1/µm) (b) M32 (N/µm)

Figure 5.10: (a) κ32 (1/µm) and (b) M32 (N/µm) plotted along line shown in figure
5.3(a) for bicrystal-a configuration at 1.2% applied strain along y.

To better understand the severity of the Gibbs phenomenon, consider the bicrystal-

b case. Figure 5.12(a) shows the initial curvature component κ32 for bicrystal-b. The

Fourier points over which the initial curvature is non-zero are shown as small pink

squares. The thickness of GB interface is t2 ≈ 2.18nm. The initial curvature is

computed as a gradient of the rotation field in crystal space, therefore there are no

oscillations as can be seen from figure 5.12(b). The magnitude of initial curvature is
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(a) σ11 (MPa) (b) σ12 (MPa)

Figure 5.11: (a) σ11 (MPa) and (b) σ12 (MPa) plotted along line shown in figure
5.3(a) for bicrystal-a configuration at 1.2% applied strain along y.

much higher than the curvatures generated during the entire simulation of bicrystal-a.

With such magnitudes, the initial couple stresses are in the order of 10−7N/µm and

could have significant contributions to the Cauchy stresses.

(a) κ32 (1/µm) contour (b) κ32 (1/µm) plot-along-line

Figure 5.12: (a) Contour plot of initial curvature field κ32 (1/µm) highlighting (in
pink) the Fourier points belonging to the GB interface of thickness t2 = 2.18nm and
(b) κ32 (1/µm) plotted along white line shown in (a) for bicrystal-b configuration.
The blue line resembles the thickness t2 of the interface.

Bicrystal-b is then loaded in tension. Compatible total curvature κ32 and couple

stress M32 at 1.2 % applied strain are plotted in figure 5.13 along the line shown in
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(a) κ32 (1/µm) (b) M32 (N/µm)

Figure 5.13: Plots over line for (a) κ32 (1/µm) and (b) M32 (N/µm) for bicrystal-b
configuration at 1.2% applied strain along y. For the sake of convenience, the blue
line resembling the thickness t2 of the interface is only shown for the couple stress.

(a) σ11 (MPa) (b) σ12 (MPa)

Figure 5.14: Plots over line for (a) σ11 (MPa) and (b) σ12 (MPa) for bicrystal-b
configuration at 1.2% applied strain along y.

figures 5.3(b). Severe unwanted oscillations are obtained in the compatible curvature

field. On the other hand, the oscillations in couple stress are not as pronounced.

This is because couple stresses have a dominant contribution coming from the initial

curvatures; the latter is almost two orders of magnitudes larger than the curvature

generated due to loading. As the imposed strain increases, the FFT algorithm induces
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unwanted oscillations of increasing amplitude in the compatible strain, and conse-

quently, Cauchy stress field. The unwanted oscillations induced in Cauchy stresses

can be observed from figure 5.14.

5.4.2.1 Correcting Gibbs phenomenon using Gaussian smoothing of initial cur-
vatures

In the previous section it was seen that the discontinuity in initial curvatures in-

troduced spurious oscillations in the Cauchy stress and compatible total curvature

fields. In this section, correction to these oscillations is made by smoothening the

discontinuity using a Gaussian low pass filter.

The 3-dimensional columnar bicrystal-b is reconsidered but with 128 Fouier points

along the x and y directions and 16 along the z direction. This provides ample of

Fourier points to apply a Gaussian of bin width 6σ̃ = 24δ, where σ̃ is the standard

deviation of the binned data. The initial curvatures are already binned along all

the directions. These have non zero gradients along the y direction. Therefore, the

Gaussian is applied to smoothen the initial curvature fields only along this direction.

Figure 5.15 shows the original unfiltered and the Gaussian filtered initial curvatures.

Uniaxial tension is then applied along the y direction and the results show that

the oscillations in both Cauchy stress and curvature fields are significantly reduced.

The compatible curvature components are also found to have significantly diminished

oscillations which further reduce with increased bin width for the Gaussian filter.

However, a non-negligible overshoot in the curvature components at the edges of the

new GB interface is obtained. This is because the Gaussian filter is only applied to

the initial curvature but the grain orientations having a rotational jump across the

GB interface remain untreated.

Gaussian filtering does reduce the long range ripples in Cauchy stress and cur-

vature fields, however it requires a significantly large bin width which is not feasible

in the polycrystalline case described in figure 5.2 without significantly increasing the
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(a) Unfiltered (b) Filtered

Figure 5.15: Plots over line from figure 5.2 for non-zero initial curvature components
(1/µm) κ22 (in red), κ12 (in green) and κ32 (in black) in the (a) unfiltered form and
(b) applying a Gaussian filter of width 24δ on the modified bicrystal-b configuration
with 128 Fourier points along x and y direction and 16 along z direction.

Figure 5.16: Plots over line from figure 5.2 for Cauchy stress components (MPa) σ11

(in red), σ33 (in green) and σ12 (in black) for the modified bicrystal-b configuration
with Gaussian filtered initial curvatures.

GB interface to volume ratio.
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Figure 5.17: Plots over line from figure 5.2 for compatible total curvature component
κ12 (1/µm) for the modified bicrystal-b configuration with Gaussian filtered initial
curvatures at 0.02% strain.

5.4.2.2 Correcting Gibbs phenomenon using DFT

In this section, a different numerical scheme based on DFT is developed to tackle

the Gibbs phenomenon. This method derives motivation from a recent work by

Berbenni et al. [34]. These workers encountered the Gibbs phenomenon in dealing

with discontinuous polar dislocation fields prescribed as initial conditions to compute

the incompatible and compatible plastic and elastic distortion field, and consequently

Cauchy stresses, using the FFT technique. Their approach to solve the problem

involved replacing the Fourier transforms of continuous partial derivatives of fields

with the Fourier transform of the centered finite difference approximation of that

field. Then using the discrete Fourier series formulation, these Fourier transformed

centered finite differences of fields were used to obtain equivalent expressions for

first and second order multiplications of angular frequencies. Using this approach,

Berbenni et al. [34] were able to remove the oscillations from the kinematic and stress
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fields.

As an illustration, consider the first order partial derivative along direction x,

∂/∂x of a continuous field f(l,m, n) where l, m and n are the Fourier points in

direction x, y and z, respectively. Using the convention of the ”fourn” subroutine as

described in appendix F, the continuous Fourier transform of this partial derivative

field is −ik1FT (f). On the other hand, the centered finite difference approximation

of the partial derivative is given as [f(l+ 1,m, n)−f(l−1,m, n)]/2δ1, where δ1 is the

inter Fourier point spacing along direction x. Taking the Fourier transform of this

expression and using the shift theorem for Fourier transforms (refer to appendix F),

the corresponding DFT approximation of −ik1FT (f) is given as −i sin(2πξ1/N1)/δ1,

where ξ1 = k1/(2π). The other partial derivatives are computed in a similar manner.

Detailed derivations of this methodology are presented in the appendix F.

With the intention to apply this technique, the following method is proposed.

Recall the compatible total strain and curvature solutions obtained using the Fourier

transform technique.

εij(x) = Eij +
1

2
FT−1

(
ikj

(
Ĝik(~k) + Ĝki(~k)

)
f̂k(~k)

)
(5.42)

κij(x) = Kij −
1

2
eiklFT

−1
(
kjkkĜlm(~k)f̂m(~k)

)
(5.43)

Using equation (5.17) for the fictive body force and defining a modified Green’s

tensor Γ̂ijkl = ξjξlĜik(~k), the above equations can be rewritten as:

εij(x) = Eij −
1

2
FT−1

((
Γ̂ijkl(~k) + Γ̂kjil(~k)

)(
τ̂kl(~k)− 1

2
eklm(ikn)µ̂mn(~k)

))
(5.44)

κij(x) = Kij +
1

2
eiklFT

−1

(
Γ̂ljmk(~k)

(
(ikn)τ̂mn(~k) +

1

2
emnp(knkq)µ̂pq(~k)

))
(5.45)

The continuous frequencies corresponding to first and second order partial deriva-

tives can then be approximated using the DFT approach as a vector and a matrix of

the form

DI
i = [DFT (ik1) DFT (ik2) DFT (ik3)]
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DII
ij =


DFT (k2

1) DFT (k1k2) DFT (k1k3)

DFT (k2k1) DFT (k2
2) DFT (k2k3)

DFT (k3k1) DFT (k3k2) DFT (k2
3)


where DFT ( ) corresponds to the DFT equivalent of frequency within the brackets.

The expressions for these are given in appendix F.

Finally, the compatible total strain and curvature can be written as:

εij(x) = Eij −
1

2
FT−1

((
Γ̂ijkl(~k) + Γ̂kjil(~k)

)(
τ̂kl(~k)− 1

2
eklm(DI

n)µ̂mn(~k)

))
(5.46)

κij(x) = Kij +
1

2
eiklFT

−1

(
Γ̂ljmk(~k)

(
(DI

n)τ̂mn(~k) +
1

2
emnp(D

II
nq)µ̂pq(~k)

))
(5.47)

This method shall hencefoth be known as the DFT-1 approach. Note that in

DFT-I, the modified Green’s tensor is still computed using the continuous Fourier

transforms. This function can also be approximated using the DFT technique. Re-

considering the expression for modified Green’s function using equation (E.17) i.e.

Γ̂ijkl(~k) = (kjkl)[C
◦
kminkmkn + F ◦kmnopikmknkokp]

−1, it involves fourth order partial

derivatives which appear in the form of multiplication of four frequencies. Their cor-

responding DFT approximations have been derived in the appendix F and are repre-

sented by the fourth order DFT tensor DIV
ijkl. Therefore, the DFT equivalent of the

modified Green’s tensor can be defined as Γ̂ijkl(~k) = DII
jl [C◦kminD

II
mn+F ◦kmnopiD

IV
mnop]

−1.

The DFT form of modified Green’s tensor can be combined with DFT-1 to obtain

an extension of this method. The extended method shall henceforth be referred to as

DFT-2.

The bicrystalline case bicrystal-b is re-simulated using the DFT-1 approach. Fig-

ure 5.18 shows the plot over line from figure 5.3(c) for curvature κ32, couple stress

M32, and Cauchy stresses σ11 and σ22 obtained using the DFT-1 and CFT approaches

at 1.2% imposed tensile strain (refer to figures 5.13 and 5.14). The results reveal that

DFT-1 is a significant improvement over the CFT approach. The intra-granular rip-

ples in Cauchy stress σ11 and σ12, and curvature κ32 have vanished. At the GB
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(a) κ32 (1/µm) (b) M32 (N/µm)

(c) σ11 (MPa) (d) σ12 (MPa)

Figure 5.18: Plots over line for (a) κ32 (1/µm), (b) M32 (N/µm), (c) σ11 (MPa), and
(d) σ12 (MPa) for bicrystal-b configuration at 1.2% tensile strain along y to compare
methods DFT-1 (in green) and CFT (in red).

interface, Cauchy stress magnitudes have reduced by a factor of ≈ 1.67 for the largest

value. This could significantly affect the yield stress predicted using the PMFDDM

method. The strongest effect is seen on the curvature magnitude which has reduced

by a huge factor of 14 confirming that the large compatible elasitc curvatures obtained

in the CFT case were drastic consequences of the spurious oscillations. More impor-

tantly, overshooting curvatures obtained in the vicinity of interfaces in the CFT and

in the Gaussian filtering case have vanished. Couple stresses are expected to not be

affected much, although the very minor ripples close to the interface have vanished.
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In order to compare all the three methods (CFT, DFT-1 and DFT-2), the bicrystal-

a case is resimulated. Figure 5.19 shows the plot over line (shown in figure 5.3(a))

for curvature κ32, couple stress M32, and Cauchy stresses σ11 and σ22 obtained using

the DFT-2 and DFT-1 approaches at 1.2% imposed tensile strain.

(a) κ32 (1/µm) (b) σ12 (MPa)

Figure 5.19: Plots over line for (a) κ32 (1/µm), (b) M32 (N/µm), (c) σ11 (MPa), and
(d) σ12 (MPa) for bicrystal-a configuration at 1.2% tensile strain along y to compare
methods DFT-2 (inblack) and DFT-1 (in green).

A stark difference between the kinematic and stress fields predicted by the two

methods is immediately apparent. The DFT-2 solution is clearly not appropriate

since it does not converge to the Eshelby solution in either of the two crystals. The

effect comes from using the DFT approximation for the modified Green’s function.

One of the possible reasons could be that the accuracy 0(δ2) achieved from using

the centered difference method may not be sufficient to obtain the correct solution.

Interestingly, DFT-2 method removes any residual oscillations that are transferred

from its DFT-1 part. Although the oscillations arising from DFT-1 are small; the

ratio of relative amplitudes (with respect to the mean value) of the oscillations for

bicrystal-a in σ11 and σ12 are 3.02% and 4.64%.

The above discussions provide ample support to the DFT-1 approach as the most
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Figure 5.20: Comparison of the equilibrium vector magnitude computed from CFT
and DFT-1 approaches at 1.2% tensile strain along the line shown in figure 5.3(a) for
bicrystal-a configuration.

suitable available approach for solving the PMFDDM FFT problem with initial cur-

vature. As a final test to validate the DFT-1 technique, the local equilibrium vector

σij,j + 0.5eijkMkl,lk is plotted, over the line shown in figure 5.3(a) for bicrystal-a, to

compare with the CFT approach. The results are shown in figure 5.20. The equilib-

rium vector from the DFT-1 method is one order of magnitude lower than in the CFT

case. Furthermore, the interface oscillations in the equilibrium vector decay rapidly

to zero, away from the interface, as opposed to the CFT case.

In conclusion, the DFT-1 approach is the best suited for solving the PMFDDM

FFT problem.

5.5 Pure elastic tensile loading: impact of initial curva-
tures on local elastic response

Following the validation of the PMFDDM FFT method with initial curvatures using

the DFT scheme, the model can now be applied to study the role of residual curvatures

on the local and macroscopic response of polycrystals. In this section, the impact
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of residual curvatures on the elastic response is studied. This corresponds to the

third test shown in table 7. The 100 grain microstructure (shown in figure 5.2 and

henceforth known as nc100) is characterized with initial curvatures having magnitudes

reflecting an average grain size of 10 nm. This is achieved by using an inter Fourier

point spacing of 0.7253 nm.

The 10 nm nc100 is loaded in uniaxial tension upto 2% strain along the y-direction

in 100 steps of 0.0002. Plastic deformation is not allowed. The VM Cauchy stress

vs. VM strain curve is then a straight line as shown in figure 5.21. The macroscopic
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Figure 5.21: VM Cauchy stress vs. VM strain plot for 10 nm nc100 configuration
with no GB initial curvature t0, GB initial curvature thickness t1, and t2.

perfectly elastic response of all three configurations match very well throughtout the

process of loading. Interestingly, the local responses are very different. In order to

appreciate the effect of initial curvatures on the Cauchy stresses, consider the plot

over line for σ22 shown for 10 nm nc100 with no initial curvature (t0), GB thickness t1

and GB thickness t2 at 0.8% strain in figure 5.22. Here, 0.8% strain is chosen because

the differences in the Cauchy stresses will be very pronounced.

Cauchy stresses of increasingly larger magnitude are obtained as the GB curvature
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Figure 5.22: Plots over line for Cauchy stress component σ22(MPa) for 10 nm nc100
configuration for t0, t1 and t2 configurations at imposed strain 0.8%. Blue lines
indicate the location of interfaces and the numbers in blue correspond to interface
identifiers from figure 5.2.

thickness increases. These are fluctuations in the local Cauchy stresses that result

from equilibrating the large couple stresses. The largest fluctuation in the case of

GB thickness t2 occurs in the σ11 component (not shown here) where a value that is

20 times larger than the average is attained. In general, the fluctuations in Cauchy

stresses do not follow the couple stress evolution trend shown in figure 5.7 but no

analogy should be drawn here because the magnitudes of both Cauchy and couple

stresses are affected by other Fourier points in their vicinity. Jumps in stress fields

across the interface appear as expected. These are the regions where Cauchy stress

fluctuations are usually largest. However, of particular interest are the fluctuations

in intra-granular stresses that are generated in between interface indicators 10-1, 5-6

and 6-7. Consider the cross sections shown in figure 5.23. These are nc100 snapshots

at 1 and 2 Fourier point spacings back and forth in the direction normal to the cross

section shown in figure 5.2. For the grain between 10-1, there are two interfaces
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(a) 2 FP (b) 1 FP

(c) -1 FP (d) -2 FP

Figure 5.23: nc100 snapshots of cross sections that are (a) 2 FP, (b) 1 FP, (c) -1
FP, and (d) -2 FP spacing away in the direction normal to the cross section shown in
figure 5.2 [FP = Fourier point].

and a triple junction that fall in its proximity, these are one and two Fourier point

spacing away in the outward direction as can be seen from figures 5.23(a) and (b).

For t1 the interface in figure 5.23(a) induces the stress fluctuations. For t2, both the

interfaces and the triple junction initial curvatures and couple stresses contribute to

the fluctuations. For 5-6, there is an interface that is at two Fourier points away

in the inward direction shown in figure 5.23(d). This affects only the Cauchy stress

response of t2. This is reflected in the plots over line for Cauchy stresses where in 5-6

the fluctuations are very high for the t2 case and relatively very low for the t1 case.

Finally, in the case of 6-7, there are no interfaces or triple junctions encountered either

240



for t1 or t2. This is reflected in nearly vanishing fluctuations in the middle zone. The

conclusion of this exercise is to highlight that the results obtained are not spurious

fluctuations but are a direct consequence of causality from residual curvatures.

The mean values for the σ22 component along the line from figure 5.2 are found to

have a very close match for all three cases. This is a combined effect of the imposed

strain rate component Ė22 and the line direction (parallel to loading direction) along

which the kinematic and stress components are plotted.

Next, consider the time evolution of Cauchy stresses. Figure 5.24 shows the plots

along line for Cauchy stress components σ11, σ22 and σ12 at imposed strains of 0.02%,

0.4% and 0.8% for the GB t2. Very large values of Cauchy stresses are developed right

(a) σ11 (MPa) (b) σ22 (MPa)

Figure 5.24: Plots over line for Cauchy stress (MPa) components (a) σ11 and (b) σ22

for 10 nm nc100 configuration with GB thickness t2 at imposed strains 0.02% (dots),
0.4% (dashes) and 0.8% (solid line). Plasticity is not allowed. Blue lines indicate the
location of interfaces and the numbers in blue correspond to interface identifiers from
figure 5.2.

at 0.02% imposed strain which is the first step of loading. These are a consequence of

the very large magnitudes of initial couple stresses induced due to the initial curvature.

These initial couple stresses contribute to the compatible total strains and curvatures

through their polarization fields resulting in fluctuations in these kinematic fields.

The compatible strains in turn lead to the generation of Cauchy stresses that have
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the reported large magnitudes, at the first step of loading. If plasticity were activated,

these would immediately result in the relaxation of the Cauchy stresses obtaining a

rather curious response of initial stress relaxation before the elastic regime.

Figure 5.25: Plots over line for Couple stress norm
√
MijMij (N/micron) for 10

nm nc100 configuration with GB thickness t2 at imposed strains 0.02% (dots), 0.4%
(dashes) and 0.8% (solid line). All lines are overlapping. Blue lines indicate the
location of interfaces and the numbers in blue correspond to interface identifiers from
figure 5.2.

Revisiting the plot over line profiles of Cauchy stresses, quite interestingly, the

σ11 and σ12 Cauchy stresses hardly undergo any change during loading. This is in

general true for all the other components of Cauchy stresses besides σ22. The latter

component increases according to the loading conditions. However, the curious stag-

nancy of the other components indicates that the couple stress may not be evolving

at all during the loading and indeed this is the case as can be seen from figure 5.25.

This implies that couple stress magnitudes have a dominating contribution coming

from initial curvatures such that they are not affected by the compatible curvature

generated during loading. This can be verified from figure 5.26. It can be seen that
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Figure 5.26: Plots over line for curvature component κ32 (1/micron) for 10 nm nc100
configuration with GB thickness t2 at imposed strains 0.02% (dots), 0.4% (dashes)
and 0.8% (solid line). Blue lines indicate the location of interfaces and the numbers
in blue correspond to interface identifiers from figure 5.2.

the compatible total (which are elastic due to absence of curvature plasticity) cur-

vatures generated are almost two orders of magnitude lower than the initial elastic

curvatures. This means the curvature contribution resulting in very high fluctuations

in Cauchy stresses predominantly arises from incompatible initial elastic curvatures.

Quite interestingly, the compatible curvature components too are found to be, in

general, stagnated from the initiation of loading. This is due to the combined effect of

stagnation in Cauchy and couple stress polarizations that contribute to the curvature.

All these values are awaiting the activation of strain plasticity to evolve.

The conclusion of this study is that the presence of local residual curvatures

induces large fluctuations in the Cauchy stress fields in the vicinity of GBs. These

could significantly affect the local plastic response of nc materials.
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5.6 Relaxation of initial stresses: understanding the role
of curvature plasticity

5.6.1 Strain plasticity

In the previous section, simulating the elastic response of nc100 with residual curva-

tures is found to generate very large fluctuations in Cauchy stresses - in the order of a

few GPas for the case of GB initial curvature thickness t2. In this section, the aim is

to study the relaxation of these Cauchy stresses by allowing strain plasticity. To that

end, only the t2 configuration is considered. The microstructure is held at constant

zero imposed strain along the y direction. Cauchy stresses are generated in order to

satisfy the local equilibrium. Due to the very large instantaneous stresses that are

generated, strain plasticity is immediately activated.

Figure 5.27 shows the VM Cauchy stress vs. VM strain plot for the relaxation

process. The initial decline in the VM Cauchy stress is very steep followed by a cu-
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Figure 5.27: VM Cauchy stress vs. VM strain plot for 10 nm nc100 undergoing
relaxation of self-stresses generated in the case of GB curvature thickness t2.

rious linear response. With the activation of strain plasticity, the large fluctuations

in Cauchy stresses are rapidly relaxed in the initial stages of the relaxation process.
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The VM stress reduces until the point where all the macroscopic Cauchy stress com-

ponents satisfy their respective boundary conditions. For example, the macroscopic

component Σ11 is imposed to zero and therefore the average value of the local stress

(figure 5.28) tends towards the macroscopic stress with increasing relaxation. On the

other hand, the macroscopic component Σ22 is not imposed to zero in order for the

microstructure to maintain a constant strain in the y direction. However, since the

macroscopic strain is imposed to zero, the mean value of local Cauchy stresses should

reduce to zero with decreasing VM stress. Quite interestingly, this is not the case.

The local Cauchy stresses are found to have a drastically reduced rate of relaxation

even though the macroscopic response attains a steady rate of decline.

Figure 5.28: Plots over line for Cauchy stress component σ11 (MPa) for 10 nm nc100
configuration with GB thickness t2 at relaxation step 1 (dots), 20 (dashes) and 40
(solid line). Blue lines indicate the location of interfaces and the numbers in blue
correspond to interface identifiers from figure 5.2.

This is a consequence of couple stresses which are found to stagnate after the

initial few relaxation steps (figure 5.29). The large residual curvatures remain un-

relaxed in the absence of plastic curvature evolution resulting into the stagnancy.
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The noticeably small change in couple stress magnitude is an effect of the compat-

ible elastic curvatures that are generated to accommodate the couple stresses. On

the other hand, there is an increase in compatible total strains which has the largest

contribution coming from plastic strains that are generated by the relaxation of the

Cauchy stresses.

Figure 5.29: Plots over line for couple stress norm
√
MijMij (N/micron) for 10 nm

nc100 configuration with GB thickness t2 at relaxation step 1 (dots), 20 (dashes) and
40 (solid line). Blue lines indicate the location of interfaces and the numbers in blue
correspond to interface identifiers from figure 5.2.

The incompatible components of accummulated plastic strains lead to the genera-

tion of polar dislocations in the medium. These are in addition to those that already

exist due to the presence of residual curvatures. Figure 5.30 also shows the contours

plotted over microstructure for the initial and generated polar dislocation densities.

The latter are found to generate close to the former due to very large Cauchy stresses

in the vicinity of the interfaces.

This reproduces the effect of GB dislocation emission.
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(a)
√
αijαij (1/micron)

(b)
√
αijαij (1/micron) initial (c)

√
αijαij (1/micron) generated at step = 20

Figure 5.30: Polar dislocation density norm
√
αijαij (1/micron) (a) plot over line

(from figure 5.2) comparison between initial density and generated density at relax-
ation step 20, and their respective contours over the microstructure t2 10nm nc100 in
(b) and (c).

5.6.2 Combined strain and curvature plasticity

In the previous section it is shown that couple stresses generated as a consequence of

the initial curvatures are hardly relaxed through the evolution of plastic strains. The

PMFDDM FFT formulation is such that the couple stresses can only be significantly

affected by the evolution of plastic curvatures. In order to test this, the relaxation
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of the 10nm nc100 t2 configuration is reconsidered. For this simulation, both plastic

strain and curvatures are allowed to accommodate the stresses. The plastic curvature

reference rate κ̇0 is set to 100 /µm, and the reference couple stress is set to M0 =

10−7 N/ µm. The initial couple stress magnitudes are very large compared to this

threshold, as can be seen from figure 5.25. These will lead to very large initial plastic

curvature rates resulting in rapid relaxation of these stresses. As mentioned earlier,

this value of M0 is purposely chosen to observe the effect of plastic curvature rates on

the local response. The plastic strain rate reference components are kept the same as

in the relaxation case studied earlier.

Figure 5.31: Comparison of VM Cauchy stress vs. VM strain plot for relaxation of 10
nm nc100 configuration with just strain plasticity and combined strain and curvature
plasticity for GB initial curvature thickness t2. The arrows indicate the direction of
increasing number of relaxation steps.

Figure 5.31 shows the comparison between VM Cauchy stress vs VM strain curve

for the relaxation cases when only strain plasticity is activated and when combined

strain and curvature plasticity are activated. With the combined plasticity case the

initial VM Cauchy stress is much lower than in the solely strain plasticity case. With

further increase in relaxation steps a very surprising result is obtained. VM strains
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are found to reduce along with reducing Cauchy stress. This implies that residual

strains diminish when curvature plasticity is activated. Interestingly, the rate of

decay in Cauchy stresses is much lower in the combined case than when only strain

plasticity is activated. The plastic curvature evolution seems to impede the rate of

Cauchy stress relaxation. The blue curve represents the VM Cauchy stress vs VM

strain curve for the combined plasticity case. With respect to the VM couple stress

vs VM curvature evolution, in the case when only strain plasticity is activated, it has

a constant value because plastic strains do not accommodate couple stresses. In the

combined case though, the VM couple stresses relax with increasing VM curvature

as can be seen from figure 5.32.

Figure 5.32: VM couple stress vs. VM cuvature plot for relaxation of 10 nm nc100
configuration with combined strain and curvature plasticity for GB initial curvature
thickness t2. The arrow indicates the direction of increasing number of relaxation
steps.

This global relaxation in couple stresses is directly reflected into the local relax-

ations. Figure 5.33 shows the plot over line from figure 5.2 for the couple stress norm√
MijMij at different relaxation steps. As expected, the couple stresses incur a rapid

drop at the first relaxation step due to the very large plastic curvature rates that are
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Figure 5.33: Plot over line from figure 5.2 for couple stress norm
√
MijMij dur-

ing relaxation of 10 nm nc100 t2 configuration with combined strain and curvature
plasticity at relaxation steps 1 and 40 compared with the initial couple stress.

generated for the low threshold of M0 = 10−7 N/µm. However, the couple stresses

appear to saturate at values higher than this threshold. To explain this, analogy is

drawn from the plastic rate response. The reference plastic curvature rate chosen is

not large enough such that when the plastic curvature rate is capable to fully ac-

commodate initial curvatures, the couple stress magnitude is already larger than the

threshold.

Figure 5.34 shows the Cauchy stress component σ11 plot over line at relaxation

steps 1 and 40 compared with the same component obtained from relaxation via just

strain plasticity. Quite interestingly, the Cauchy stress fluctuations are found to be

lower in the combined plasticity case. This is a combined effect of strain plasticity

and the lowering in couple stress magnitude due to curvature plasticity. The plot

also reveals a surprising reversal in the Cauchy stresses at some locations going from

compressive to tensile.

With the activation of curvature plasticity, an increase in the total compatible
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Figure 5.34: Plot over line from figure 5.2 for compatible Cauchy stress component
σ11 during relaxation of 10 nm nc100 t2 configuration with combined strain and
curvature plasticity at relaxation steps 1 and 40 compared with the one obtained
from relaxation via just strain plasticity at step 40.

curvature should be expected. Figure 5.35 shows the plot over line for the compatible

total curvature at relaxation steps 1 and 40 compared with the one obtained from

the relaxation case for just strain plasticity at step 40. Quite interestingly, the total

curvature has much lower fluctuations in the combined plasticity case as opposed to

just strain plasticity. In the former case, the total curvatures are the elastic curvatures

necessary to accommodate the stagnated very large couple stresses. However with the

activation of curvature plasticity, these magnitudes rapidly decrease resulting in the

lower fluctuations in compatible curvatures. This is important because the larger the

change in plastic curvature, higher is the associated plastic rotation. For the present

case, at the step 40 the largest rotation rate is found to be about 3 radians.

The polar dislocation density evolution is very interesting (shown in figure 5.36).

It is found to rapidly decrease and rapidly increase in different locations. It appears
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Figure 5.35: Plot over line from figure 5.2 for compatible total curvature component
κ32 during relaxation of 10 nm nc100 t2 configuration with combined strain and
curvature plasticity at relaxation steps 1 and 40 compared with the one obtained
from relaxation via just strain plasticity at step 40.

that the increases occur at locations where the couple stress is stagnated which re-

sults in the accummulation of plastic curvature that directly contributes to the polar

dislocation density through equation (2.99).

Finally, the polar disclination density too evolves with the change in the plastic

curvature rate. Figure 5.37 shows the plot over line for the evolution of polar discli-

nation density norm
√
θijθij. The initial polar disclination density should be zero but

as a consiquence of the initial curvature methodology chosen, numerical initial discli-

nation densities are obtained. Quite interestingly, its magnitude decreases rapidly at

the places where the couple stress magnitude is very large and increases at the lo-

cations where the couple stress magnitude is low enough for the plastic curvature to

accummulate. Despite the increase in the polar dislocation and disclination densities,

the overall Cauchy and couple stresses are decreasing over time indicating that these

increase in defect polarities could result in stabler configurations.
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Figure 5.36: Plot over line from figure 5.2 for polar dislocation density norm
√
αijαij

during relaxation of 10 nm nc100 t2 configuration with combined strain and curvature
plasticity at relaxation steps 1 and 40 compared with the one obtained from relaxation
via just strain plasticity at step 40.

5.7 Uniaxial tension: impact of residual curvature on stress-
strain response

The previous study on the 10nm nc100 highlighted the impact of residual curvatures

on generation of local Cauchy stresses and their role in significantly reducing the

relaxation of local stresses in the microstructure. In this section, their role on the

elastic-plastic response of the microstructure is studied during tensile loading. This

corresponds to the final test described in table 7.

In order to avoid dealing with relaxations of initial microstrctures, the nc100

microstructure is characterized with grains of average size 30 nm by taking an in-

ter Fourier point spacing of 2.176 nm. Cauchy stresses at the first step of loading

are found to be lower the threshold stress chosen (330 MPa). Since the texture in

the microstructure remains the same, the initial elastic curvatures, polar dislocation

and disclination densities, and initial couple stresses all have magnitudes that are

253



Figure 5.37: Plot over line from figure 5.2 for polar disclination density norm
√
θijθij

during relaxation of 10 nm nc100 t2 configuration with combined strain and curvature
plasticity at relaxation steps 1 and 40 compared with the one obtained from relaxation
via just strain plasticity at step 40.

δ10nm/δ30nm = 3 times lower than their 10 nm nc100 counterparts.

Applying uniaxial tension in a similar way as in the case of 10 nm nc100, with no

plasticity, the same type of trends are obtained for the evolution of Cauchy stresses,

couple stresses and compatible elastic curvatures. Due to the reduced value of initial

curvatures, the fluctuations in Cauchy stress and compatible curvatures are much

lower than in the 10 nm case. The average compatible elastic curvature magnitude is

found to be three times lower than in the 10 nm nc100 case. Interestingly, the Cauchy

stress average value for σ22 is found to be the same as in the case of 10 nm nc100.

This is a consequence of the couple stress theory framework and its FFT implemen-

tation. The Cauchy and couple stresses are only related to each other through their

fluctuating terms which are treated in the FFT component of the algorithm. For the

curvature and couple stress magnitudes to affect the average magnitude of Cauchy

stresses, both stresses must be constitutively related to elastic strain and curvature
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as shown in the section 3.1.
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Figure 5.38: VM Cauchy stress vs. VM strain plot for 30 nm nc100 configuration
with no GB initial curvature t0, GB initial curvature thickness t1, and t2.

Strain plasticity is now activated with the generic γ̇0 = 0.1/sec and n = 10. Figure

5.38 shows the VM Cauchy stress vs. VM strain response. As expected, in the case

when GB initial curvatures are very high, the corresponding large fluctuations in

Cauchy stresses are accommodated at an earlier stage. Therefore, Cauchy stresses

in the t2 case reach their saturation point faster than in the t1 and t0 cases. These

results show an effect that resembles the breakdown in Hall-Petch law. In a separate

set of simulations, the magnitude of A is taken as 0.1Gb2 to test the dependence of

the saturation stress on this value. It is found that the VM Cauchy stress vs. VM

strain response for the t1 and t2 cases saturates at a higher stress but still follows the

same hierarchy in saturating. Therefore, this effect of the softening of the saturation

point for Cauchy stresses, which is very similar to the breakdown in Hall-Petch law,

is coming from the couple stresses generated to accommodate the residual curvatures.
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These results show that residual curvatures in the nc GB interface have a signifi-

cant contribution to the plastic response of these materials.

5.8 Discussion

In this chapter, the meso-scale PMFDDM model was numerically implemented using

an FFT based approach to study the influence of residual curvatures on local and

macroscopic response of bulk polycrystalline aggregates.

Validation of the numerical technique is performed in two stages. In the first

stage, the model, which is based on using CFTs of parital derivatives of fields quan-

tities, is benchmarked against the existing state-of-the-art in FFT based modelling

i.e. the EVP FFT model. The local and macroscopic response predicted by both

these models are found to have a very good match, thus validating the PMFDDM

approach. The second stage involves validating the local and macroscopic response

in the presence of residual curvatures. It is found that the CFT approach invokes

the Gibbs phenomenon when computing the derivative of discontinuous residual cur-

vatures, and grain rotations across interfaces. This leads to the development of the

PMFDDM FFT model based on DFT.

The PMFDDM DFT model is then applied to nc aggregates with residual cur-

vatures subjected to study the influence of residual curvatures on their (1) purely

elastic, (2) strain based plastic, and (3) combined strain and curvature based plastic

response. For this purpose, the nc microstructures of 0%, 31.54% and 55.95% GB

interface to volume ratio are considered. Here the GB interface is characterized by

imposing and spreading the residual curvatures in the vicinity of the grain bound-

ary. The pure elastic loading case reveals a very close match in the macrscopic VM

Cauchy stress vs. VM strain response for all the microstructures studied. Quite in-

terestingly, very large fluctuations in the local Cauchy stress response are obtained
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with increasing thickness of the GB residual curvatures. Activating strain plastic-

ity results in immediate relaxation of these Cauchy stresses through the evolution

of statistical dislocations and the generation of polar dislocation densities. On the

other hand couple stress evolution is found to stagnate very close to their original

values because of the residual curvatures that are unable to evolve in the absence of

curvature plasticity. This also has a significant impact on the relaxation of Cauchy

stresses. Finally, activating both curvature and strain based plasticity reveals that

couple stresses are relaxed through the evolution of polar dislocation and disclinations

resulting in lower Cauchy stresses.

The most significant result from this study is the softening in the yield stress

obtained for microstructures characterized with residual curvatures. This is effect of

the local couple stresses that are generated which relax the Cauchy stresses in the

vicinity of grain boundaries that occupy a large volume of the nc microstructure. This

results in the lowering of the yield stress which could help explain the breakdown in

the Hall-Petch relationship.

In nc materials, couple stresses are generated in the event that a bending mo-

ment or torque acts locally or macroscopically on the material. Such moments or

torques are generated during plasticity mechanisms involving GB motion. One of the

effects of these local moments or torques is to induce grain rotations. The present

PMFDDM FFT model is able to account for the plasticity induced by these local

moments and torques through the evolution of both plastic strain and curvatures.

The results show that relaxing the coule stresses changes the polarity of discinations

in the microstructure thus leading to stabler configurations. This strongly indicates

that evolution of plastic curvature could help understand the lack of or formation of

polar disclinations, at the same time explaining why polar dislocation densities do

not appear where they are expected and vice versa. Prior to understanding this, it is

important to perform studies to parametrize the plastic curvature rate constants.
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Application of the PMFDDM FFT model to nc aggregates has led to the opening

of several potential areas of research inluding: (a) Understanding relaxation of inter-

nal stresses through the evolution of statistically stored and geometrically necessary

dislocation and disclination densities plastic strain and curvature evolution. This

could help shed light on the possible configurations that are favorable for nucleation

of screened disclinations. (b) Study the role of Cauchy and couple stress non-locality

induced through the interface tangential continuity conditions necessary to maintain

the continuity of strains and curvatures at the GB interface. (c) Introducing the

transport of defects to study the collective behavior of GB plasticity mechanisms.

(d) Studying the effect of complex loading conditions - for example combined torsion-

compression or uniaxial tension with bending - with the help of combined strain,

curvature, Cauchy and couple stress based boundary conditions. (e) Understanding

the role of residual curvatures and strains and their evolution on microstructures sub-

jected to multi-axial or cyclic loading. (f) Developing expressions for the elasticity

tensor A in higher order symmetres to generate heterogeneous local couple stresses

in absence of initial curvatures.

5.9 Conclusion

The study performed in this chapter highlights the importance of residual curva-

tures on the local and bulk mechanical response of nc materials. Presence of residual

curvatures results in the generation of large fluctuations in local Cauchy and cou-

ple stresses. These could play an important role in the activation of rare events

such as nucleation of new grains, twins, etc. Relaxation of stresses generated from

residual curvatures reproduces the effect of GB dislocation emission. Furthermore,

these residual curvatures are found to lower the saturation point of the macroscopic

Cauchy stress response during tensile loading; a softening effect that could explain

the breakdown in the Hall-Petch relationship.
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This study has led to the development of a numerical tool based on the FFT im-

plementation of meso-scale PMFDDM model using the DFT technique. The model is

based on a couple stress theory formulation through which it is capable of accounting

for the evolution of geometrically necessary and statistically stored dislocations and

disclinations, residual strains and curvatures, heterogeneous elasticity and complex

loading conditions.
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CHAPTER VI

VIRTUAL DIFFRACTION: MULTI-SCALE

CHARACTERIZATION

In this chapter, the purpose is to understand if residual curvature and inompati-

bilities can be characterized using X-ray diffraction. To assess this, a multi-scale

numerical tool connecting the incompatible theory of defects with the kinematic the-

ory of diffraction is developed for generating virtual diffraction peaks from defected

microstructures. This tool is designed such that it facilitates comparison between dif-

ferent plasticity models - including the multi-scale field disclination and dislocation

mechanics model proposed in this work -, atomistic simulations, and experiments.

The chapter is organized as follows: Section 6.1 recalls the existing virtual diffrac-

tion peak generation techniques that use either a displacement based approach [445,

446] or a strain based approah [384] to generate virtual peaks from a distorted crystal.

Section 6.2 elaborates on the complexities involved in using these methods and in-

troduces a new averaged strain based Fourier method for constructing virtual peaks.

Section 6.3 presents the methodology used to generate diffraction peaks using all the

aforementioned methods. In order to assess the agreement of these methods as a

function of microstructures, different scenarios are investigated. First, the case of

a single infinitely long screw dislocation, originally discussed in the work of Wilson

[459, 460] is revisited. Second, the case of a low angle GB, constructed via the use

of a wall of edge dislocations is studied to understand the effect of negligible higher

gradients of displacement on the conformity of the three methods. Third, several

microstructures built from restrictedly random distributions of dislocations are used
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to generate peaks via these methods and the results are analysed. Finally, a realis-

tic microstructure resulting from coplanar slip and generated via the use of discrete

dislocation dynamics (DDD) is used to quantify the consistency of these methods

for the purpose of practical applications. Section 6.4 compares the proposed virtual

diffraction technique with other diffraction based characterization techniques.

6.1 Virtual diffraction peaks from a defected crystal: the-
oretical review

The purpose of this section is to highlight the different possible techniques to generate

virtual diffraction peaks from distorted crystals. To that end, the kinematic theory

of X-ray diffraction based derivations of the Fourier method of Warren [446] and the

Stokes-Wilson approximation [384] are rigorously derived.

The Fourier method of Warren is an exact technique to generate diffraction peaks,

albeit within the bounds of the kinematic theory of diffraction. In a coherently

diffracting distorted single crystal, kinematic theory of diffraction states that the

diffracting intensity I is a function of the diffraction vector ~g′ as follows [446]:

I (~g′) = IeF
2
∑
m′

∑
m

exp (2πi~g′ · (Rm′ −Rm)) (6.1)

where Ie is the intensity of the polarized primary beam, F is the complex structure

factor that is same for each unit cell, and the double summation is performed over

the total number of unit cells in the crystal. ~Rm is the position of atoms in the

m1m2m3
th cell in the crystal and is given as:

~Rm = m1~a1 +m2~a2 +m3~a3 + ~u(m1,m2,m3) (6.2)

where ~a1,~a2,~a3 are the orthogonal vectors defining a unit cell in lattice space and

~m = m1~a1 + m2~a2 + m3~a3 is the position of m1m2m3
th cell in this space. The

displacement vector ~u(m1,m2,m3), which is a smooth function, accounts for the

distortions within the continuous domain and in general is different for each unit cell.
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Strains within the domain are assumed to be continuous, therefore any distortion

within the unit cell is neglected [446]. The diffraction vector is defined as ~g′ =

~s−~s0
λ

= h1
~b1 +h2

~b2 +h3
~b3 where ~s0 and ~s are the primary and reflected beam vectors

respectively and h1, h2 and h3 are continuous variables in the reciprocal space ~b1,~b2

and ~b3. Substituting equation (6.2) into (6.1) gives,

I (~g′)

= IeF
2
∑
m′

∑
m

exp

2πi

h1

(
m
′

1 −m1

)
+ h2

(
m
′

2 −m2

)
+ h3

(
m
′

3 −m3

)
+~g′ ·

(
~u
(
m
′

1,m
′

2,m
′

3

)
− ~u (m1,m2,m3)

)

 (6.3)

The powder pattern theorem [446] is now recalled. This theorem provides the

total power received from a powder sample (irradiated with X-rays of wavelength λ)

containing M crystals and placed at a distance R from the receiving surface. The total

power is a function of the intensity I (~g′) integrated over a volume in the reciprocal

space. Expressing in terms of power distribution, the total power received from a

powder sample of M crystals is defined as

I tot =

∫
I(2θ)d(2θ) =

MR2λ3p(hkl)

4va

∫∫∫
I(~g

′
)

sin θ
dh1dh2dh3 (6.4)

where 2θ is the diffraction angle, I(2θ) is the power distribution, p(hkl) is a multi-

plicity factor that transforms the interference function into one equivalent region in

reciprocal space. Stokes and Wilson [384] and Warren [446] have shown that aligning

the diffraction vector along one of the orthogonal reciprocal space basis vectors ~b1, ~b2

or~b3 gives the same expression for power distribution as obtained from a general treat-

ment using an arbitrary diffraction vector. Following the convention from the work of

Warren [446], the methodology is developed by probing along the 00l direction. How-

ever, for the sake of generality, the vectorial notation is retained but the diffraction

vector is probed only along the direction 00l in the reciprocal space. Then the change

in diffraction vector is given as ∆~g = (h1−h)~b1 +(h2−k)~b2 +(h3− l)~b3 ≈ (h3− l)~b3.

Such an approximation allows for the definition dh3 = cos θd(2θ)
λ|b3| . The expression for
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I(2θ) can then be written as,

I (2θ)

=
KMF 2

sin2 θ

∑
m′

∑
m

exp


2πi



(h1 − h+ h)
(
m
′

1 −m1

)
+ (h2 − k + k)

(
m
′

2 −m2

)
+ (h3 − l + l)

(
m
′

3 −m3

)
+~g′ ·

(
~u
(
m
′

1,m
′

2,m
′

3

)
− ~u (m1,m2,m3)

)




dh1dh2

=
KMF 2

sin2 θ

∑
m′

∑
m



exp


2πi



(h1 − h)
(
m
′

1 −m1

)
+ (h2 − k)

(
m
′

2 −m2

)
+ (h3 − l)

(
m
′

3 −m3

)
+~g′ ·

(
~u′ − ~u

)




×

exp

2πi

h
(
m
′

1 −m1

)
+ k

(
m
′

2 −m2

)
+l
(
m
′

3 −m3

)




dh1dh2 (6.5)

where K is a constant. m
′
1, m

′
2, m

′
3, m1, m2, m3 and h, k, l are integers. Therefore

the second exponential term becomes a complex multiple of 2π and hence equal to

unity leading to:

I(2θ) =
KMF 2

sin2 θ

∫∫ ∑
m

∑
m′

exp
(

2πi
[
∆~g · (~m

′
− ~m) + ~g · (~u

′
− ~u)

])
(6.6)

Warren and Averbach [448] and Bertaut [35] proposed a methodology to reduce

the above equation to a simpler form. Let N be the total number of unit cells in

the domain. The diffracting domain can then be divided into columns Ci (i goes

from 1 to total number of columns Nc in the domain) of unit cells, aligned along the

direction of the diffraction vector ~g; these columns are perpendicular to the reflecting

plane. The unit cells within each column are separated by a length |~L| = |~m′ − ~m|.

Therefore ~L can be defined as:

~L = ~m′ − ~m = t
~g

|~g|
(6.7)
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where t = |~L|. For a given |~L|, two unit cells that are separated by this distance

within the same column form one NL pair. The ratio of the summation of all such

NL pairs within the domain with respect to Nc gives the average number of NL pairs

per column (N ′). The ratio of N ′ with respect to the average number of cells per

column (N/Nc) defines the proportion (N∗ = N ′Nc

N
) of average number of all possible

unit cell pairs that are involved in forming NL pairs within the column. Defining

the difference in displacement between unit cells forming an NL pair in a distorted

crystal as ∆~u(~L) and averaging the exponential term involving ∆~u(~L) over the entire

domain, the distributed power is reduced to a single summation over the magnitude

of ~L gives

I(2θ) =
KNF 2

sin2 θ

∞∑
|~L|=−∞

N∗
〈

exp
(

2πi~g ·∆~u(~L)
)〉

exp
(

2πi~L ·∆~g
)

(6.8)

where 〈〉 indicates averaging the exponential term involving ∆~u(~L) over the entire

crystal domain.

For the ease of understanding the implications of connecting theory of defects

with the kinematic theory of diffraction. it is convenient to avoid dealing with the

complexities associated with structure factors of the material system. Therefore a

rather simpler formulation of the intensity in terms of ∆~g is adopted such that

I(∆~g) =
I(2θ) sin2 θ

KNF 2
(6.9)

This normalization generalizes the present scheme to account for both X-ray and

electron diffraction; the Lorentz-polarization factor [78] that contributes to the inten-

sity obtaind from X-ray diffraction is factored out. Then separating the exponential

terms in equation (6.8) into its sine and cosine components, the intensity can be

written as

I (∆~g) =
∞∑

|~L|=−∞

{
A
(
~L
)

cos
(

2π~L ·∆~g
)

+B
(
~L
)

sin
(

2π~L ·∆~g
)}

(6.10)
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where the summation is carried over the Fourier length |~L|. This expression for

I (∆~g) represents a Fourier series with A(~L) and B(~L) as the Fourier coefficients

which can be interpreted as a product of the size Fourier coefficient AS(~L) = N∗ and

the distortion Fourier coefficients

AD(~L) =
〈

cos 2π~g ·∆~u(~L)
〉

BD(~L) =
〈

sin 2π~g ·∆~u(~L)
〉

(6.11)

Note that the term BS(~L) does not exist because the contribution of grain size is

a real term and cannot be represented using an imaginary quantity. Furthermore, the

size contribution is always positive. In the present work, for the sake of comparison

with the Stokes-Wilson approximation, size broadening is neglected and only the

distortion Fourier coefficients shown in equation (6.11) are used.

The Fourier transform method (6.10) is computationally intensive as it requires

calculating the Fourier coefficients for length |~L| varying from 1 cell spacing to the size

of the diffracting domain along the direction of the diffraction vector. An alternative,

significantly less computationally intensive approach to generate strain broadened

profiles was introduced by Stokes and Wilson [384]. This approach, known as the

Stokes-Wilson approximation, uses apparent strains (local strains resolved along the

direction of the diffraction vector) to compute the intensity diffracted from a co-

herently diffracting domain. The Stokes-Wilson approximation is derived from the

Fourier method; the details of which are shown in the following.

Redefining the difference in displacement in terms of a scalar component resolved

along the direction of |~L| as

εL =
~g ·∆~u(~L)

|~g||~L|
(6.12)

The distortion Fourier coefficients from equation (6.11) can be redefined in terms
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of a probability distribution function (PDF) of εL
(
pεL
(
εL
))

[445, 101, 425, 245] as

AD(~L) =

∞∫
−∞

pεL(εL) cos
(

2π|~g|εL|~L|
)
dεL

BD(~L) =

∞∫
−∞

pεL(εL) sin
(

2π|~g|εL|~L|
)
dεL (6.13)

Stokes and Wilson [384] argued that for large values of |~L| the relative displace-

ments between the unit cells will be random and hence cancel each other out. For

very small values of |~L| it is possible to take the power series expansion of ~u(~x+ ~L)

around the point ~x giving ∆~u(~L) = ~u(~x) + ~L · ∇~u(~x) + ~L
2

: ∇∇~u(~x) + · · · − ~u(~x).

Neglecting O(~L
2
) terms and substituting for ~L from equation (6.7) gives

∆~u(~L) = t
~g · ∇~u
|~g|

(6.14)

Substituting (6.14) in the expression of AD(~L) and BD(~L) shown in equation

(6.11) gives AD(~L) = 〈cos(2πt~g · ∇~u · ~g/|~g|)〉 and BD(~L) = 〈sin(2πt~g · ∇~u · ~g/|~g|)〉.

The apparent strain is defined as e = g · ∇u · g/|g|2 which upon re-substituting

t = |~L| leads to the following definitions,

AD(~L) =
〈

cos(2π|~L|e|~g|)
〉

BD(~L) =
〈

sin(2π|~L|e|~g|)
〉

(6.15)

Equation (6.15) rewritten in terms of the PDF of e, (pe (e)) gives,

AD
(
~L
)

=

∞∫
−∞

pe (e) cos
(

2π
∣∣∣~L∣∣∣ e |~g|) de

BD
(
~L
)

=

∞∫
−∞

pe (e) sin
(

2π
∣∣∣~L∣∣∣ e |~g|) de (6.16)

Therefore the assumption of Stokes and Wilson, that for large values of ~L the

relative displacements between the unit cells will be random and cancel each other

out [384], implies that equations (6.13) and (6.16) result in the same solution for the
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distortion Fourier coefficients. Comparison of the two PDF definitions in equations

(6.13) and (6.16) reveals that the assumption of Stokes and Wilson also implies that

the PDF of εL is independent of |~L| [384, 245],

pεL(εL) = pe(e) (6.17)

The Fourier transform of the intensity neglecting size effects may then be defined

as,

AD
(
~L
)

+ iBD
(
~L
)

=

∞∫
−∞

I (∆~g) exp(−2πi∆~g·~L) d∆~g (6.18)

Taking the inverse Fourier transform gives,

I (∆~g) =

∞∫
−∞

[
AD
(
~L
)

+ iBD
(
~L
)]

exp
(

2πi∆~g · ~L
)
d
∣∣∣~L∣∣∣ (6.19)

and from equation (6.16)

AD
(
~L
)

+ iBD
(
~L
)

=

∞∫
−∞

pe (e) exp
(

2πi
∣∣∣~L∣∣∣ e |~g|) de (6.20)

Substituting (6.20) in (6.19) gives the expression [245]

I (∆~g) =

∞∫
−∞

∞∫
−∞

pe(e) exp
(

2πi|~L|e|~g|
)

exp
(

2πi|∆~g||~L|
)
d
∣∣∣~L∣∣∣ (6.21)

The apparent strain e is also defined as e = d−d′
d

where d is the perfect lattice

plane spacing along the direction of ~g and d′ is the lattice plane spacing caused

by lattice deformation. Under small strain hypothesis, the apparent strain may be

approximated as e = d−d′
d′

. Then similar to the work of Leineweber and Mittemeijer

[245], the relationship between ∆~g and e is given as e = −|∆~g|/|~g′| ≈ −|∆~g|/|~g| .

Substituting in equation (6.21) leads to,

I(∆~g) ≡ p∆~g(∆~g) =
1

|~g|
pe(e) (6.22)

Equation (6.22) shows that within the bounds of the Stokes-Wilson approximation

the diffracted intensity distribution is proportional to the PDF of apparent strain
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because the higher gradients of displacement within the coherently diffracting domain

are neglected; a consequence of which results in equation (6.17) [245, 24]. The Stokes-

Wilson approximation has already been used to generate diffraction peaks in the

discrete dislocation dynamics simulations of Balogh et al. [24].

6.2 A new average-strain based Fourier method

As shown in the previous section, the displacement based Fourier transform method

[446] relies on the knowledge of the displacement fields arising from a defected mi-

crostructure while that of Stokes and Wilson [384] makes use of the internal strain

fields. For the displacement based Fourier method of Warren, connection with de-

fect theory can be achieved by following the discrete approach. In the following, the

methodology adopted is based on dislocations but is equally applicable to disclina-

tions.

Assuming the medium to be elastically isotropic, it is possible to express the

displacement field of equation (2.15) in the form of a line integral associated with a

curved dislocation in an infinite medium [93] as,

~u(~x) = −
~b

4π

∫
C

~A · d~x′ + 1

8π

∫
C

(
−{~b}∆| ~X|+ 1

1− ν
∇(∇| ~X| ×~b)

)
· dx′ or

ui(~x) = − bi
4π

∫
C

Akdx
′
k +

1

8π

∫
C

(
eiklbl| ~X|,pp +

1

1− ν
ekmnbn| ~X|,mi

)
dx′k (6.23)

Here ~X = ~x−~x′ denotes the radius vector which connects the source point ~x′ on

the dislocation line to the field point ~x. ~A = Ai is a vector potential corresponding

to a solid angle and defined as:

~A =
X̂ × ~s

| ~X|(1 + ~X · ~s)
(6.24)

where X̂ denotes the unit vector ~X/| ~X| and ~s is an arbitrary unit vector giving

the direction of the surface cut (depicted in figures 2.3 and 2.11). The choice of this

unit vector is arbitrary. Note that the surface cut is a mathematical formulation
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necessary to define the displacement field of a dislocation. In reality materials do not

have a surface cut at a dislocations site. Atoms in the vicinity of a dislocation are

displaced from their perfect lattice position. This departure from the ideal configu-

ration is visible to the X-rays in the form of the lattice displacement field entering in

equation (6.10) through (6.11). Therefore, from the perspective of kinematic theory

of diffraction, it is only the instantaneous position of atoms that is visible to the

X-rays. Thus, only the elastic displacement field contributes to the scattering inten-

sity. From the theory of dislocations, the equilibrium solution presented in equation

(6.23) is in fact the multi-valued elastic displacement field. A unique separation of

this multi-valued elastic displacement field is not possible due to the arbitrary nature

of ~s. Therefore, for the lack of an alternative, in the present work, as in the work

of Kamminga and Delhez [198, 199], the multi-valued elastic displacement is used to

generate the broadened peaks from the Fourier based method of Warren.

Figure 6.1: Representation of different displacement differences due to a jump at the
cut surface. The two points are along the same diffraction vector separated by the
same length in two equivalent cylindrical domains containing screw dislocations with
equal line and Burgers vector but different orientation of the cut.

The presence of the surface cut, along with the arbitrariness associated with its

orientation, may have consequences on the broadening of the diffraction peaks. With

respect to virtual diffraction from a distorted crystal, depending on the orientation of
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this cut, the magnitude of difference in elastic displacements entering the cosine and

sine functions of distortion Fourier coefficients in equation (6.11) could be different.

Consider the illustration in figure 6.1 of an infinitely long single screw dislocation

placed at the center of a cylindrical domain whose axis is along the z direction. In

one case the cut is aligned along the −x direction and in the second case the cut is

aligned along the +y direction. Note that such a specific choice of cut orientations is

made only for the sake of illustration and it is representative of the general problem

that is discussed here. Let a beam of X-rays with diffraction vector aligned in the

yz plane (so that its projection in xy plane is along the y direction) be incident on

each of these cylindrical domains. For a given Fourier length |L| when the resolved

component of diffraction vector crosses the surface cut, the jump leads to a relatively

larger difference in displacement compared to when the surface cut is not traversed for

the same two points. Therefore mathematically and computationally, for the same

dislocation line, Burgers and diffraction vector, there are multiple possibilities of

displacement contributions to virtual diffraction peaks depending on the orientation

of the cut.

Encountering the surface cut while computing the displacement differences could

have a significant effect on the broadening of the diffraction peaks. This can be math-

ematically demonstrated through the exponential term of the intensity in equation

(6.3) or the distortion Fourier coefficients in equation (6.11). The jump in the surface

cut is of the order of a lattice vector, specifically the Burgers vector. Therefore the

difference in displacements taken across the surface cut would introduce an additional

term, in the form of an inner product between the diffraction vector and the Burgers

vector i.e. exp (2πi~g ·∆~u) = exp
(

2πi~g ·∆~u∗ + 2πi~g ·~b
)

where ∆~u∗ is the differ-

ence in displacement if the surface cut were not present between those points, and

~b is the Burgers vector. This additional term exp
(

2πi~g ·~b
)

will contribute to the

computed intensity if 2π~g ·~b is not a multiple of 2π.
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An alternative way to generate the virtual peaks is to use strain based methods

such as the Stokes-Wilson approximation [384]. Due to the discrete nature of dis-

locations considered here, only the out-of-core compatible elastic strains are taken

into account. However, this method is applicable to both discrete and continuous

approaches. The core contributions to diffraction (which include compatible elastic

and incompatible elastic and plastic, strains) are neglected because the total volume

occupied by the dislocation core is very small compared to the rest of the coherently

diffracting domain studied in this work and would not have a significant effect on the

broadening of peaks. Furthermore, this allows the application of the present model

in a discrete framework without dealing with the singularity in elastic strain field

associated with the dislocation line defined within the core.

Taking the gradient of the elastic displacement field given in equation (6.23),

one obtains the compatible elastic distortion field. The symmetric component of

the compatible elastic distortion – compatible elastic strain – associated to a curved

dislocation line is given as (deWit, 1960),

e
||
ij (x) =

1

2

(
ui,j (x) + uj,i (x)

)
=

1

8π

∮
C

−
1

2

(
ejkl(bi|X|,l − bl|X|,i) + eikl(bj|X|,l − bl|X|,j)

)
,pp

+
1

1− ν
ekmnbn|X|,mij

 dx
′

k

(6.25)

So far, the only strain based method that has been applied to generate virtual

peaks is the Stokes-Wilson approximation [384]. The underlying assumptions of this

method however limit the application to microstructures having short range stresses.

The Stokes-Wilson argument that relative displacement is random for large values

of |L| implicitly assumes that the coherently diffracting domain is devoid of long

range strain inducing defects. However, this may not be the case in material systems

such as nano-crystalline aggregates. Recall from section 2.2.2, the study on nc Pd

using aberration corrected transmission electron microscopy which revealed the pres-

ence of a disclination dipole along a Σ9 GB and terminating near a Σ9 Σ3 Σ3 TJ
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[341]. Ordered strain field distribution within and around the disclination dipole may

not satisfy the Stokes-Wilson approximation and therefore could have an important

contribution to the diffraction profile. For very small values of |L|, these distribu-

tions of strain translate into localized strain gradients, which too are neglected in the

Stokes-Wilson approximation; thus the contribution coming from all the gradients of

displacement except for the instantaneous elastic strain are ignored.

In what follows, a new computational technique for generating the diffraction

profile is presented which, along with the strains, accounts for other gradients of the

displacement without making any assumptions. First, the components of gradients

of displacement that have a contribution to line broadening are identified.

Recalling the definition of εL in (6.12); it is equal to the change in displacement

along the direction of the diffraction vector. For small distances, the differences in

displacement, when expanded in the form of power series, become a function of their

gradients. These gradients can be separated into symmetric components correspond-

ing to elastic strain gradients and anti-symmetric components corresponding to elastic

curvatures and their gradients [421]. In order to identify which of these components

contribute to the broadening of intensity profiles the power series expansion is revis-

ited: ∆~u(L) = ~u(~x)+~L ·∇~u(~x)+~L
2

: ∇∇~u(~x)+ · · ·−~u(~x) for small |~L|. Rejecting

O(~L
3
) terms and switching to Einstein notations gives ∆ui(~L) = Ljui,j + LjLkui,jk.

Substituting the difference in displacement in equation (6.13) for cosine distortion

Fourier coefficients and equation (6.7) for the Fourier length gives:

AD(~L) =
〈

cos(2π~g ·∆~u(~L))
〉

=
〈

cos(2πgi∆ui(~L))
〉

= 〈cos(2π [giLjui,j + giLjLkui,jk])〉

=

〈
cos

(
2πt

|~g|

[
gigjui,j +

t

|~g|
gigjgkui,jk

])〉
(6.26)

In the work of Stokes and Wilson [384] and Wilson [460] it has been shown that the

double dot product of the diffraction vectors with the first gradient of the displacement
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- distortion tensor - extracts the symmetric part of the distortion tensor i.e. the

strain. The second gradient of displacement - 2-distortion tensor - is worked out in a

similar way. It has been shown that the 2-distortion tensor can be sub-divided into

a symmetric and anti-symmetric component with respect to any two of its indices

[421]. Therefore:

AD(~L) =

〈
cos

(
2πt

|~g|

[
gigjεij +

t

|~g|
gigjgk(u(i,j)k + u[i,j]k)

])〉
(6.27)

From equations (2.52) and (2.51), the anti-symmetric component of the 2-distortion

tensor which is the third order curvature tensor κ̃[ij]k can be represented in terms of

the second order curvature tensor as κ̃[ij]k = −eijlκlk. Substituting this in equation

(6.27) gives,

AD(~L) =

〈
cos

(
2πt

|~g|

[
gigjεij +

t

|~g|
gigjgk(u(i,j)k − eijlκlk)

])〉
(6.28)

From the definition from the Levi-Civita permutation tensor it can be easily de-

duced that gigjeijl = 0. Therefore the equation from the cosine distortion Fourier

coefficient reduces to,

AD(~L) =

〈
cos

(
2πt

|~g|

[
gigjεij +

t

|~g|
gigjgkεij,k

])〉
(6.29)

Thus besides elastic strain, only the strain gradient and by analogy higher gradi-

ents of strain contribute to line profile broadening. For larger values of ~L this would

translate into distribution of strains. The elastic rotation, curvature and its gradients

have no contributions to the line profile.

Therefore εL defined in equation (6.12) as the resolved component of the difference

in displacement along the direction of the diffraction vector can now be defined as

the elastic strain averaged over the length
∣∣∣~L∣∣∣,

εL (x) =
1∣∣∣~L∣∣∣

x+
|~L|
2∫

x− |
~L|
2

ee (x) dx (6.30)
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where e (x) = ~g·εe(x)·~g
|~g|2 is the apparent elastic strain.

With such a definition of εL coupled with the knowledge that curvature does not

contribute to broadening, the Fourier coefficients are defined as shown in equation

(6.13). The intensity can then be computed by combining equations (6.13), (6.19)

and (6.30) to give,

I (∆~g) =

∞∫
−∞

∞∫
−∞

pεL
(
εL
)

exp
(

2πi |~g| εL
∣∣∣~L∣∣∣) exp

(
2πi~L ·∆~g

)
dεLd

∣∣∣~L∣∣∣ (6.31)

Equation (6.31) is derived from the Fourier method without imposing any limits

either on the range of the diffraction vector or on the Fourier length. This formulation

is applicable in both discrete and continuous framework. Furthermore, the problem

associated with multi-valued elastic displacement and the orientation of the disloca-

tion jump surface is avoided altogether without making any assumptions. From the

computational standpoint, similar to the Stokes-Wilson approximation, evaluating

the intensity using equation (6.31) requires only the knowledge of the local elastic

strain field in the material; however it is necessary to know the probability distribu-

tion function (PDF) of the strain averaged over the Fourier length
∣∣∣~L∣∣∣ for all ~L.

From the standpoint of kinematic theory of diffraction, equation (6.10) and equa-

tion (6.31) should give the exact same diffraction peaks since both are the exact

solutions derived from equation (6.3). However, from the perspective of the theory of

dislocations there is a fundamental difference stemming from the multi-valued nature

of the elastic displacement field. The consequences of these are presented later in this

work for the particular case of the restrictedly random distribution.

For the sake of clarity, in the remainder of the article, the Fourier method of

Warren and the new averaged strain method shall be referred to as the Fourier dis-

placement method and the Fourier averaged strain method, respectively.
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6.3 Establishing domains of applicability

6.3.1 Computational methodology

In order to generate virtual diffraction peaks with the Fourier transform method of

Warren (6.10), the Stokes-Wilson approximation (6.22), and the new averaged strain

method (6.31), two different numerical procedures are used. To probe the differences

between these methods for different microstructures, representative volumes are either

seeded with infinitely long straight dislocations - for which closed formed expressions

are given in section 2.1.1 - or seeded with finite length dislocations. In this second

case, the idea is to generate microstructures representative of those actually gener-

ated during plastic deformation of single crystals or of polycrystals. To that end,

the discrete dislocation dynamics method is employed. Dislocations are therefore dis-

cretized into segments formally defined by two end points (or nodes) whose position

and tangent are used for the purpose of interpolation of the position and tangent of

all points belonging to the segment [141]. Neglecting accelerations, the over-damped

equations of motion of each dislocation line are then solved using an adaptive finite

element scheme. For more details, the reader is referred to the work of Balogh et al.

[24].

From a given microstructure, defined by dislocation lines, the diffraction peaks

can be approximated by the method of Stokes and Wilson [384]. Recall here that,

as discussed above, one of the core assumptions of the Stokes-Wilson construct of

diffraction peaks is the independence of the PDF of average strains with respect to the

Fourier length. Therefore, the coherently diffracting volume containing dislocations

is randomly seeded with sampling points at which the apparent strain is computed.

An optimized binning procedure [361] is then used to obtain the PDF of strain that is

to be computed as a function of departure from the inverse of the equilibrium spacing

between the planes i.e. |∆~g| = 1
d′
− 1

d
. The bin size is taken as: w = 3.49σn−

1
3 [361],

where w is the bin width and σ is the standard deviation of the apparent strain for
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n sampling points. The apparent elastic strain at each sampling point is computed

using the superposition principle. Therefore, at a given field sampling point the elastic

strain field is computed as the sum of the fields arising from each dislocation line.

While closed form expressions of the elastic strain field from an infinitely long straight

dislocation exist [96] and are presented in equations (2.17), the strain field due to a

curved dislocation is computed via the numerical integration of the expression (6.25).

To that end, a composite Gaussian integration procedure is used in which each length

of a curved dislocation sub-segment does not exceed 1000 lattice spacings. For each

sub segment 32 integration points are used.

In the Fourier displacement method, the heart of the numerical procedure lies in

the computation of the distortion Fourier coefficients AD(~L) and BD(~L). As shown

by equation (6.11), these depend on the difference in the displacement between two

points separated by a Fourier length |~L| along the direction of the diffraction vector.

Therefore for each |~L|, NL pairs of points are initially seeded within the volume.

Every point in the NL pair is separated by |~L| from its conjugate, along the direction

of the diffraction vector. For each point, the displacement fields are either computed

with use of closed form analytical expression as shown in equations (2.16) - in the case

of straight dislocations - or via computation of the displacement as given by equation

(6.23). In the latter case the same numerical integration procedure, prescribed for

the case of elastic strain computation, is used. Finally, the cosine and sine terms

in equation (6.11) are averaged over the NL pairs to give their respective distortion

Fourier coefficients.

The new averaged strain method also requires the evaluation of the Fourier coef-

ficients AD(~L) and BD(~L) which are now defined using the equation (6.13) involving

the averaged strain εL from equation (6.30). The numerical procedure begins with

computing the elastic strain within the domain at points lying on a regular grid. Then

for each Fourier length
∣∣∣~L∣∣∣, NL pairs of points are randomly sampled in the domain.
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εL is evaluated for each of these NL pairs by averaging the resolved local elastic strain

computed at regularly spaced points along the segment joining the two points consti-

tuting an NL pair. The interpolation is carried out at each of these segment points

by using the nodal elastic strain values of their respective associated grid element.

A dislocation core with a radius of one Burgers vector is defined so that any

sampling points falling within this core are neglected from the computation of the in-

tensity. Figure 6.2 illustrates the sampling procedure for a microstructure containing

finite length screw dislocations.

Figure 6.2: Microstructure containing finite long screw dislocations. The red dots
represent sampling points.

All the simulations are performed using 5 × 106 points sampled for the Stokes-

Wilson approximation, 104 NL pairs for the Fourier displacement method and 4 ×

104 NL pairs for the Fourier averaged strain method, unless mentioned otherwise.
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The intensities and PDFs generated are normalized with respect to their maximum

values to compare their widths. In order to avoid difficulties associated with crystal

anisotropy, microstructures in all four cases are taken as those of Aluminum with

lattice spacing a0 = 4.0494 Å, shear modulus µ = 26 GPa, and Poissons ratio ν =

0.345. The simulated continuous media is elastically isotropic, has cubic symmetry

and it has the shear modulus and the Poissons ratio of Aluminum.

The relative difference between resulting reflections obtained by using Stokes-

Wilson approximation with respect to the Fourier based methods is quantified by

comparing the integral breadths of the peaks. Integral breadth of a line profile is

defined as the ratio of the total intensity I =
∫
I (∆~g) d∆~g with respect to dI

d∆~g

∣∣∣
max

which translates into a ratio of the area under the I (∆~g) vs. |∆~g| curve with re-

spect to the maximum value of the intensity distribution Imax. Since the intensity

distribution is normalized with respect to its maximum value, the integral breadth

in the present framework becomes equal to the area under the normalized I (∆~g) vs

|∆~g| curve. In the following sections, for the line profiles of different microstructures

studied, only the percentage difference in integral breadths will be highlighted. To

compute area under the normalized I (∆~g) vs |∆~g| curve, the trapezoidal rule is used.

6.3.2 Applications to Dislocations in Single Crystal Microstructures

The purpose here is to apply the virtual diffraction tool to understand the contribution

of ordered strain fields, that are typically observed in the vicinity of line defects, on

the broadening of diffraction peaks. Generating diffraction peaks using Stokes-Wilson

approximation is computationally less demanding than the Fourier displacement and

the new Fourier averaged strain method, albeit at the cost of neglecting strain gra-

dients and distributions of strain. It is therefore interesting to observe the extent

of error induced in making such assumptions. This is realized by investigating four

distinct cases. In the first three scenarios, infinitely long and straight dislocations are
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inserted in a volume to study the cases of (1) a single screw dislocation in a cylindrical

volume (2) a low angle GB - to compare the intensity profiles in presence of localized

higher displacement gradients, (3) a restrictedly random distribution of dislocations

- to highlight the contribution of higher displacement gradients and strain averaged

over a distance |~L| to intensity profiles -, and (4) the last configuration studied is a

dislocation microstructure associated to coplanar slip that is generated by the discrete

dislocation dynamics method.

6.3.2.1 Single screw dislocation in a cylinder

In this first scenario, the case of a single dislocation isolated in a cylindrical volume is

revisited to further demonstrate the fundamental differences between the three meth-

ods. The screw dislocation line is aligned along the axis of an infinitely long cylinder.

The origin is chosen to be at the center of the circular surface and the cylindrical axis

and dislocation line are aligned along the ~a3 direction. The displacement field in the

presence of an infinitely long screw dislocation is given as:

~u =
b3

2π
tan−1(

y

x
)~a3 (6.32)

where b3 is the Burgers vector component along the direction ~a3.

Following the procedure adopted by Wilson [460], an analytical description of the

diffraction peak profile can be obtained by virtue of the Stokes-Wilson approximation.

The apparent elastic strain resolved along the hkl direction can be derived as:

e =
~g · ∇~u · ~g
|~g|2

=
b3l~g · (â3 × ~r)

2π|~g|2|~r|2
(6.33)

where ~r = xâ1 + yâ2. It follows from equation (6.33) that the locus of the apparent

strain is a circle with radius equal to b3l~g·(â3×~r)
4π|~g|2e and center at

(
0,− b3l~g·(â3×~r)

2π|~g|2e

)
. Let E

denote the largest value attained by the apparent elastic strain on the circumference

of the cylinder. The PDF of apparent strain pe (e) is obtained by computing the

fraction of total area of cross-section that lies between the circles of radii e and e+de
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and is given as [460],

pe(e)de =
E2

2e3
de for e > E and

pe(e)de =

(
E2

2e3
− E2

πe3
cos−1

( e
E

)
−
√
E2 − e2

πe2

)
de for e < E (6.34)

Analytical solutions involving Bessel functions for the intensity diffracted from

a cylindrical domain containing a single screw dislocation have been provided in an

earlier work of Wilson [459]. However, due to lack of rigorous proof these are not

used in the present work.

The methodology discussed in section 6.3.1 is tested in the case of a single screw

dislocation. Figure 6.3 shows a convergence test comparing the PDF of strain ob-

tained from the numerical Stokes-Wilson approximation using 5 × 104, 5 × 105 and

5× 106 sampling points and Wilsons analytical solution for a single screw dislocation

of Burgers vector 001 placed at the center of a cylinder with radius equal to 1000 a0

using diffraction vector ~g = 402. Such a configuration has a dislocation density of

≈ 1.94× 1012m−2.

The plots show that with 5×106 sampling points there is a reasonably good match

between the analytical and numerical PDFs of strain. The percentage difference in

integral breadths with respect to the analytical peak is 7.5% as opposed to 25.8%

using 5 × 104 points and 21.2% using 5 × 105 points. Increasing the number of

sampling points slowly improves the accuracy but with a significant increase in the

computation time. Using 5× 106 points provides a good trade-off between accuracy

and computation time. Convergence studies were also performed for the displacement

based Fourier method and averaged strain based Fourier method (not shown here)

leading to the choice of 104 NL pairs and 4 × 104 NL pairs as mentioned in section

6.3.1.

For the sake of comparison and consistency with the ensuing applications, the

coherently diffracting domain will from now on be taken as a cuboid with two square
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Figure 6.3: Convergence test comparing PDF of strain plotted using numerical
Stokes-Wilson approximation for 3 sets of points (SW 50000 pts, SW 500000 pts,
SW 5000000 pts) and Wilsons analytical solution (Wilson (analytical)) for diffraction
vector ~g = 402

faces perpendicular to the dislocation line. Figure 6.4 shows the comparison of in-

tensity generated using the Fourier displacement method, Fourier averaged strain

method and PDF of strain obtained from numerical Stokes-Wilson approximation

for a single screw dislocation of Burgers vector 001 placed at the center of a square

domain with dimensions 1000a0 x 1000a0 using diffraction vectors ~g = 111, 222, 224

and 333. The dislocation density of the domain is ≈ 6.1× 1012m−2.

The diffraction peaks obtained from the Fourier based methods are symmetric

about the line |~g| = 0 which is consistent with the numerical solution of the Stokes-

Wilson approximation. Ripples in the Fourier based solutions are an artifact caused

by the fact that distortion Fourier coefficients AD
(
~L
)

and BD
(
~L
)

do not converge
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Figure 6.4: Intensity comparison between the normalized Fourier method, the Stokes-
Wilson (SW) approximation and Wilson’s analytical solution for diffraction vectors
(a) ~g = [111], (a) ~g = [222], (a) ~g = [333] and (d) ~g = [224]

to zero until the maximum
∣∣∣~L∣∣∣ is reached. This effect, is referred to as termination

ripples, can also be observed in figure 6.7, but there it is much less pronounced.

Theoretically, AD
(
~L
)

and BD
(
~L
)

should be calculated till
∣∣∣~L∣∣∣ reaches infinity as

indicated by the summation limits in equation (6.11). However, for computational

purposes a cut-off limit needs to be imposed. In the present work, this limit is set

to be the domain size along the direction of the diffraction vector. The intensity

can have negative values if the distortion Fourier coefficients do not converge to zero

within the defined range of
∣∣∣~L∣∣∣.

There is an excellent agreement between the Fourier displacement and averaged
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strain methods for all the diffraction vectors. On the other hand, a significant dif-

ference in peak widths exists between those generated from Fourier based methods

and the Stokes-Wilson approximation. The percentage difference in integral breadths

of peaks obtained from Stokes-Wilson approximation with respect to those from the

average strain based Fourier method for diffraction vectors ~g = 111, 222 and 333

are 41.69%, 26.31% and 20.19%, respectively, whereas for ~g = 224 the difference is

48.79%. These differences come from the Stokes-Wilson assumption that the PDF of

apparent elastic strain is equal to the PDF of averaged apparent elastic strain which

neglects the uniform distribution arising from the decay of strain field away from the

dislocation line.

Comparison of the Fourier based methods in figure 6.4 shows that in the case of

a single screw dislocation, the displacement difference across the jump surface does

not affect the diffraction profile. This can be explained as follows. As seen in section

2.1.1, the surface cut for a single screw dislocation in 2-dimensions is bounded by

the z-axis (−∞,∞) and the x-axis (−∞, 0] which in the xy plane is represented

by the line y = 0 bounded by the points x = −∞ and x = 0 [96]. Therefore the

differences in displacements, taken along the xy plane projection of all the diffraction

vectors, encounter this surface cut. Following the reasoning from section 6.2, these

differences in displacement across a surface cut introduce an additional term in the

form of exp
(

2πi~g ·~b
)

. For all the diffraction vectors used here i.e. ~g = 111, 222,

224 and 333, and the Burgers vector of the screw dislocation ~b = 001, the inner

product ~g ·~b is an integer which leads to an even multiple of pi that has no effect on

the exponential term.

The significance of distribution of strains to broadening of the diffraction peaks

obtained from the Fourier method may be appreciated by comparing the PDF of

average apparent elastic strain pεL
(
εL
)

over a distance with the PDF of apparent

elastic strain p (e) as shown in figure 6.4. The comparison is made for three Fourier
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Figure 6.5: Comparison of normalized PDFs of elastic strain averaged over lengths
|~L| = 2a0, 200a0 and 400a0 with the normalized PDFs of apparent elastic strain

lengths viz. |~L| = 2a0, 200a0 and 400a0 for the diffraction vector ~g = 111. From

figure 6.4, for |~L| = 2a0 the PDF of εL compares well with the PDF of apparent strain.

Such a result is to be expected. More interestingly, an unmistakable broadening of the

PDF of averaged strain occurs with the increase in |~L| highlighting the importance

of the distribution of strain.

6.3.2.2 Low angle symmetric tilt GB

Low angle symmetric tilt GBs (LAGBs) are particularly interesting because of the

inhomogeneous strain distribution and sharp second and higher order displacement

gradients localized in the vicinity of the GB. With such a configuration, a stark dif-

ference in the intensity generated from displacement based Fourier method, averaged

strain based Fourier method and the PDF of strain from Stokes-Wilson approxima-

tion may be expected. To test this hypothesis, the Fourier intensities and pe(e) are

computed for [001] tilt LAGB with misorientation of 2o using two diffraction vectors;

284



Figure 6.6: Low angle STGB represented using dislocations with Burgers vector ~b
and periodic spacing of d. Periodic boundary conditions are imposed along x-axis

~g = 131 and 311. The GB is represented as a dislocation wall aligned parallel to the

x-axis and centered in a square domain of size 1000 a0 × 1000 a0 giving a dislocation

density of ≈ 2.1 × 1014m−2. Periodic boundary conditions are imposed along the

X-axis as shown in figure 6.6. The spacing d between the dislocations is computed

using the Franks formula d =
|~b|/2

sin(ω/2)
where ω is the tilt angle.

The results are illustrated in figure 6.7. To facilitate a better comparison of peak

tails, the I(∆~g) vs. |∆~g| curves are re-plotted on a semi-log scale. A positive constant

shift, equal to the magnitude of the global minimum intensity of all three peaks, is

added to each of these peaks in order to facilitate the illustration of negative values

in tail ripples; for ~g = 131 and 311, the shifts are equal to 0.0015866 and 0.10808,

respectively. The peaks are then renormalized and plotted as shown in figure 6.7(c)

and 6.7(f).

Contrary to expectation, the shape and broadening of the three profiles are in

good agreement as seen in plots 6.7(b) and 6.7(d); percentage differences in inte-

gral breadths obtained from Stokes-Wilson approximation and average strain based
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Figure 6.7: Distortion Fourier coefficients from the Fourier displacement and aver-
aged strain methods a) and d) and comparison of intensities from the Fourier dis-
placement (Fourier ) method, Fourier averaged strain (Fourier ∆~u) method and the
Stokes-Wilson (Stokes-Wilson) approximation in the case of a 2◦ [001] STGB b) and
e) for diffraction vectors ~g = 131 and 311. Plots c) and f) are the same intensities
in semi-log format, renormalized after a positive shift by a constant (0.0015866 and
0.10808, respectively, for ~g = 131 and 311) equal to the magnitude of the minimum
of intensity of all three peaks combined, to facilitate illustration of the negative values.
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Fourier method equal to 14.54% for ~g = 131 and 4.89% for ~g = ~311. Similar to

the case of single dislocation, tail ripples are generated due to the distortion Fourier

coefficients not converging to zero for the chosen range of
∣∣∣~L∣∣∣.

Elastic strains are localized in the vicinity of the GB and the displacements in each

crystal forming the GB interface are constant and equal in their respective lattices.

Accounting for the highly localized but non-negligible residual elastic strain distri-

bution within the GB interface leads to pεL
(
εL
)
≈ pe (e). Also, the strain gradients

are inhomogeneously distributed and restricted to the GB interface. Therefore their

contribution to the peak profile generated using the Fourier method is not significant.

Figure 6.7(b) and 6.7(d) further reveal symmetric peaks but with a distinct peak

shift for both the diffraction vectors. It is well known that the presence of GBs can

cause a shift in the diffraction peaks from their mean positions [414]. Peak shifting

occurs due to the elastic strains generated in the presence of dislocation walls and is

factored into the virtual peaks from the non-zero values of the distortion Fourier sine

coefficient BD(~L). Peak symmetry is attributed to the highly localized strains and

strain gradients occupying a very small domain area in the neighborhood of the GB

interface along the direction of diffraction vector.

With the limit on
∣∣∣~L∣∣∣ set to be the maximum distance in the domain along the

direction of ~g, for some diffraction vectors such as ~g = 311 the values of AD(~L)

and BD(~L) do not necessarily converge to zero in the permissible range. Comparison

of the distortion Fourier coefficients in figure 6.7 reveals that high amplitudes of

termination ripples occur when AD(~L) and BD(~L) do not converge to 0 within the

range of |~L| values, as mentioned also for figure 6.4.

Increasing the magnitude of the diffraction vector component along the direction

of the Burgers vector leads to a faster convergence of the distortion Fourier coeffi-

cients and broadens the diffraction peaks. On the other hand, increasing the mag-

nitude of diffraction vector component along the GB (~b ×~l) leads to a much slower
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convergence to zero for the distortion Fourier coefficients, meaning a less broadened

diffraction peak. This effect is analogous to the well-known phenomenon of strain

anisotropy, where the broadening of strain profiles in a dislocated crystal is scaled for

hkl dependence by dislocation contrast factors [417]. Such a result could be helpful in

identifying the direction of the GB without a priori knowledge about its orientation

in the sample.

6.3.2.3 Restrictedly random distribution of dislocations

Wilkens [450, 451, 452] introduced the concept of restrictedly random distribution

(RRD) of dislocations as an energetically admissible representative volume element

alternative to the completely random distribution chosen in the work of Krivoglaz

[214]. In the context of present work, the RRD configuration is interesting because

of the associated homogeneous distribution of strain and higher order displacement

gradients.

In the RRD configuration, the two-dimensional domain is divided into sub do-

mains of equal areas. Equal amount of dislocations with opposite Burgers vectors

are randomly distributed within these sub areas such that the net Burgers vector

is equal to zero and the dislocation density in each sub domain is equal to that of

the entire domain. With the help of this configuration, Wilkens [450, 451, 452] pro-

vided an analytical expression for the variance of averaged square strain, which is

used to calculate theoretical diffraction profiles based on his dislocation model using

the Warren-Averbach equation [447, 448]. Theoretical profile functions based on the

Wilkens model are used by the modern full pattern diffraction line profile analysis

methods, like eCMWP, to evaluate strain broadening caused by dislocations [326].

The RRD has been studied by Kamminga and co-workers [198, 199, 200] who used

the displacement based Fourier method to perform simulations for single slip and

multi-slip in 2D in order to test the domains of applicability of the Wilkens model
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[450, 451, 452]. Traditionally [451, 452, 198, 199], the two-dimensional coherently

diffracting domain is taken as an infinitely long cylinder. However it is difficult to

divide the cylindrical domain into equal areas of equal size without either overlapping

sub-domains or eliminating sub-domains with smaller areas [199]. In the context of

the aim of this work i.e. study of the effects of strains, their distributions and higher

order strain gradients on diffraction profile and to avoid the alterations to domain

size and consequently dislocation density, an infinitely long rectangular cuboid with

two square faces is chosen as the domain. A set of 32 infinitely long straight screw

dislocations with Burgers vector~b = ±1
2

[110] are placed in the domain perpendicular

to the square face of an area 2000a0 × 2000a0 resulting in a dislocation density of

4.88× 1013m−2. Dislocations with such a Burgers vector are typically found in FCC

materials. The domain is divided into 16 sub domains of areas 500a0×500a0. Each of

these sub domains has 2 randomly placed dislocations with opposite Burgers vector.

Such a configuration ensures that the sub domains have equal areas, same dislocation

density and a zero net Burgers vector. A similar RRD configuration is used in a

detailed statistical analysis to study dislocation screening effects on diffraction peaks

in the works of Kaganer and Sabelfeld [196], and Levine and Thompson [246]. In the

present work performing such an analysis is not intended; instead the microstructural

configuration is used to show the differences between the three diffraction profile

calculation methods.

The simulations are performed for 5 diffraction vectors allowed by the selection

rules of an FCC lattice viz. 131, 113̄, 313̄, 311 and 311̄. A Gaussian filter is applied

to the Fourier coefficients to dampen the termination ripples, and thus facilitate

comparison with the reflections obtained by the Stokes-Wilson method. Applying a

Gaussian filter is equivalent to convoluting the Fourier transform of that Gaussian

to the peak shape. This convolution can be thought of as adding a computational

instrumental broadening to the peak shapes. The standard deviation (σ) used in the
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Gaussian is computed using the I(∆~g) and |∆~g| values from the Fourier displacement

method and the same Gaussian filter, with a range [-3σ,3σ] with 150 binning intervals,

is applied to all the intensities. For the sake of brevity however, only the intensities

obtained from diffraction vectors 113̄ and 313̄ are illustrated in figure 6.8.

Figure 6.8: Comparison of normalized unfiltered and filtered i.e. with instrumental
broadening - intensity from Fourier averaged strain (Fourier εL), Fourier displacement
(Fourier ∆~u) method, and PDF of strain from Stokes-Wilson approximation (SW) for

RRD of 32 screw dislocations with Burgers vector ~b = ±1
2

[110] in a 2000 a0 x 2000
a0 simulation box divided in 16 sub domains for diffraction vectors (a), (b) ~g = 113̄,
and (c), (d) ~g = 313̄.

The plots show that for diffraction vectors ~g = 113̄ and 313̄ , there is an excel-

lent match between the diffraction peaks generated using the Fourier based methods;

in fact an overlap of these peaks is observed after filtering. Following the discus-

sion in section 6.3, this similarity occurs because the additional exponential term
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exp
(

2πi~g · n~b
)

does not contribute to the diffraction peaks; here n is an integer rep-

resenting the number of surface cuts between two particular points that are used to

compute the difference in displacement for a given ~L. With the diffraction vectors

~g = 113̄ and 313̄ and Burgers vector ~b = 1
2

[110] the inner product 2π~g ·n~b becomes

a multiple of 2πn and therefore it does not contribute to the diffraction peaks.

With respect to the intensity obtained from Stokes-Wilson approximation, the

conformity with peaks obtained from Fourier strain based method for the studied

diffraction vectors ~g = 113̄ and 313̄, is better than the single dislocation case but

not as good as in the case of LAGB; the percentage difference in integral breadths

being 15.54% and 19.72%, respectively for the aforementioned diffraction vectors.

These conformities in profiles can be attributed to the variation in strain along the

direction of the diffraction vector. In the direction of diffraction vectors used here

the apparent strain distributions and the gradients may not be significant to have

a large contribution to broadening of the peak generated from the Fourier methods.

It is not just the presence of a particular strain distribution or strain gradients that

warrants for peak broadening, but also their visibility along the direction of the

diffraction vector; a phenomenon that can be explained by the dislocation contrast

factors [417, 415].

Asymmetry of the profiles is caused by the elastic strains induced in presence of

dislocations [419, 287, 416]. This effect is captured by the peaks generated using the

Stokes-Wilson approximation but becomes more pronounced in the peaks generated

using the Fourier based methods, especially in the tails, highlighting the influence of

strain distributions and strain gradients of displacement on the diffraction profiles.

Comparing the LAGB and RRD microstructures, the two main differences are

the arrangement of dislocations and the nature of dislocations. The LAGB has geo-

metrically necessary dislocations with net Burgers vector not equal to zero and the

RRD has statistically stored dislocations with the net Burgers vector equal to zero.
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Simulations were performed on the RRD to test if modifying the net Burgers vector

has a consequence on the diffraction peaks generated. In the modified RRD con-

figuration all dislocations were assigned the same Burgers vector such that the net

Burgers vector magnitude was now equal to 16
√

2a0. Similar to the original RRD

configuration, results (not shown here to avoid redundancy) revealed a good match

for the diffraction profiles, however no effect of the non-zero net Burgers vector could

be extrapolated. Simulations were repeated for the original and modified RRD with

edge dislocations, but similar to the previous case no dependence of the diffraction

peak shape on the net Burgers vector could be extrapolated. Strain distribution aris-

ing from screening of the stress fields of dislocations - depending on their arrangement

- is the dominating factor in determining the evolution of diffraction profiles.

6.3.3 Dislocation discontinuity surface cut

In the previous section, all the reflections that were studied correspond to the allowed

reflections in cubic crystals. It is observed that for the reflections studied there is no

difference between the two Fourier based methods indicating that the dislocation

discontinuity surface cut does not contribute to broadening of peaks. In fact, for

all combinations of allowed reflections and Burgers vectors in cubic crystals, the

exponential term exp
(

2πi~g ·~b
)

and hence the surface cut do not contribute to the

broadening of peaks.

In order to study the significance of the surface cut and its orientation in the case

when exp
(

2πi~g ·~b
)
6= 1, I(∆~g) vs. ∆~g profiles are re-plotted in the case of RRD

simulations (similar to the ones in section 6.3) for one forbidden reflection in cubic

crystals corresponding to ~g = 101. This forbidden reflection yields exp
(

2πi~g ·~b
)
6= 1

and is compared with two allowed reflection ~g = 113̄ and 313̄. Three simulations

are performed for these diffraction vectors: 1) the surface cuts associated with all

dislocations are oriented at 0o, similar to the work of deWit [96], 2) all surface cuts

292



oriented at 50◦ and 3) each dislocation has its own surface cut randomly assigned. The

peaks are calculated using the Fourier displacement method and the Stokes-Wilson

approximation. As expected the peaks obtained for the allowed reflections, 113̄ and

313̄, matched perfectly for all three surface cut orientation cases. Furthermore, there

was no difference in the PDF of apparent elastic strain obtained from the Stokes-

Wilson approximation for any of the above cases. For the sake of illustration, only

one allowed reflection corresponding to g = 313̄ is compared with the forbidden

reflection g = 101 in figure 6.9.

Figure 6.9: Comparison of filtered diffraction peaks obtained from an RRD with
32 screw dislocations along the [110] slip direction and Burgers vector 1

2
[110] for the

allowed reflection with diffraction vector a) ~g = 313̄ and the forbidden reflection with
diffraction vector b) ~g = 101 using the Fourier displacement method for surface cuts
oriented at 0◦ (cut angle 0 deg), 50◦ (cut angle - 50 deg) and randomly (cut angle -
random) assigned for each dislocation with the Stokes-Wilson approximation (SW)

Interestingly, there are significant differences found between the peaks obtained

for the diffraction vector g = 101 for which exp
(

2πi~g ·~b
)
6= 1. These differences

illustrate the mathematical uncertainty associated with assigning an orientation to

the surface cut and the corresponding error in using the displacement based Fourier

method to generate diffraction peaks for the cases where exp
(

2πi~g ·~b
)
6= 1. Note

that in FCC crystals, such differences in peak shapes associated with the surface cut

are found only in the case of a few forbidden reflections. However, the presented
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mathematical scenario can become a physical reality for certain structures; for exam-

ple, some of the super-structure reflections of an L12 ordered alloy having superlattice

dislocations would be susceptible to the problem. In L12 cubic structures the Burg-

ers vector of a superlattice dislocation is ~b = 1
2

[110] [84] and the 101 reflection is

permitted: thus using the displacement based Fourier method to generate diffraction

peaks for this particular case would be problematic.

An indirect consequence of the presence of surface cuts is the contribution of

plastic strain history to the diffraction profiles. In order to understand this, reconsider

the integral in equation (6.30) for the averaged apparent elastic strain: εL (x) =

1

|~L|

x+L
2∫

x−L
2

ee (x) dx. The methodology adopted in this work involves performing the

integration over a straight line joining two points separated by the distance
∣∣∣~L∣∣∣.

Such a straight line integral is allowed because the apparent elastic strain used in

this work is compatible i.e. e = e‖. This compatible elastic strain is a state variable

independent of the path of dislocation and hence unaffected by the presence and

orientation of the surface cut. However, if incompatible strains are considered then

dislocation path dependence is necessarily induced. From the incompatible theory

of dislocations, incompatible elastic strains ee⊥ are induced in the material due to

the incompatible plastic strains ep⊥ associated with the presence of dislocations with

the necessary condition ee⊥ = −ep⊥ to maintain the continuity of the material [2].

These incompatible plastic strains are associated with the surface cut through the

symmetric component of the incompatible plastic distortion tensor (U p⊥) where the

latter is defined as Up⊥
kl (~r) = −δk

(
~S
)
bl, as shown in equation (2.14). The symbol

~S corresponds to a 3-dimensional surface bounding the dislocation line which in

the static 2-dimensional case for an infinitely long straight dislocation becomes the

semi-infinite surface cut, r is a point in space and δ is the Dirac-Delta function on

the surface ~S. The relationship of this 3-dimensional surface ~S with the plastic

distortion Up⊥ indicates that its shape and orientation may depend on the history of
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plastic strain in the material; a hypothesis that remains to be rigorously proven. If

such dependence were to be obtained then the integral in equation (6.30) could yield

different results depending on the path chosen, provided the incompatible elastic

strains are accounted for.

In the displacement based Fourier method where the equilibrium solution of multi-

valued elastic displacements is taken, the only possible way that the path dependence

could affect the diffraction profile is through the surface cuts. However, in the 2-

dimensional static formulation adopted here, since the surface cut orientations can be

arbitrarily assigned, the displacement based Fourier method may not be reliable for

those combinations of diffraction and Burgers vectors where exp
(

2πi~g ·~b
)
6= 1. This

problem of orienting the surface cut can be avoided by using the out of core compatible

elastic strains in the average strain based Fourier method to obtain the diffraction

profile. To account for the presence of surface cuts and consequently the plastic strain

history in the average strain based Fourier method, the in-core incompatible elastic

strains need to be considered. Interestingly, in the case of FCC crystal lattices one

finds that all the combinations of allowed reflections and dislocation Burgers vectors

lead to exp
(

2πi~g ·~b
)

= 1, indicating that in this very particular case the diffraction

peaks are independent of the surface cut and hence the plastic strain history.

6.4 Diffraction as a characterization technique

The work considers existing diffraction peak generating methods that link the kine-

matic theory of diffraction to the theory of defects. From a continuum standpoint,

generating virtual diffraction peaks from distorted crystals has so far been achieved

using either the displacement based Fourier transform method or the Stokes-Wilson

approximation. In the case of dislocation microstructures, Kamminga [198, 199] used

the closed form equilibrium solution of elastic displacements of infinitely long straight
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dislocations in the Fourier transform method to simulate X-ray diffraction peaks asso-

ciated with the presence of RRDs of infinitely long and straight dislocations - similar

to those assumed by Wilkens [450] -. The numerical and semi-analytical models

showed relatively good agreement. However, the present study has revealed that in

using the displacement based method, there is a degree of complexity and uncertainty

involved due to the multi-valued nature of elastic displacements induced in presence

of line crystal defects. This precludes the use of the displacement based method

for specific material systems. Furthermore, this method cannot be applied to the

a fully continuous framework where the displacement fields are undefined. On the

other hand, the approximate Stokes-Wilson method has been used by Wilson [459]

to derive an analytical expression of diffraction line profiles due to the presence of an

infinitely long screw dislocation contained in a cylindrical volume. In another work,

Wilson [460] adopted the Stokes-Wilson approximation to provide a simple strain

based expression of the intensity. Similarly, the case of a single edge dislocation was

treated in the work of Vassamillet [431]. The Stokes-Wilson method, however, uses

a stringent approximation in neglecting the effects of strain gradients on broadening

and therefore limit their applibility to selected cases. A recent work by Kaganer and

Sabelfeld [197] has shown that the Stokes-Wilson approximation is applicable only in

cases where long-range order in strain distributions is absent.

A new average strain based method is developed that avoids the problem of multi-

valued displacements, accounts for the higher gradients of strains and has a wider

domain of applicability. The method can be used to generate virtual diffraction peaks

from both fine and meso-scale plasticity models that are based either on a discrete

representation of defects such as discrete dislocatio dynamics models [224, 92, 479,

360, 142, 449, 53, 36] or a fully continuous approach based on incompatibilities such

as the one presented in this work.

The trade-off between the accuracy and the demand for computational power of
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the three methods is discussed based on the applications to (1) a single screw dis-

location, (2) a low angle symmetric tilt grain boundary and (3) restrictedly random

distribution of dislocations. The Stokes-Wilson approximation is computatationally

the fastest but least accurate method, while the Fourier method based on average

strains is the slowest but accurate and the most robust. Virtual peak profiles gen-

erated from simulation cells of known dislocation configurations can be evaluated by

various line profile analysis procedures: either by methods based on the Wilkens ap-

proach [451, 452, 476, 404, 229, 152, 418, 413, 413, 414], or by moment based methods

[151, 48], or by early techniques like the Warren-Averbach method [447, 448]. The

characteristics of the dislocation structure determined using the above mentioned

methods can then be compared with the known values from the simulated configura-

tions in order to explore the boundaries and capabilities of the evaluation methods

for various microstructural scenarios.

The three aforementioned methods can be thought of as bottom-up approaches

where virtual diffraction peaks are developed from a known microstructure. On the

other hand, top-down approaches such as the X-ray and neutron diffraction line profile

analysis (LPA) exist and are widely used to extract statistical microstructural fea-

tures, such as sub-grain (coherently diffracting domain) size, dislocations, twinning

and stacking faults, from the shape of diffraction peaks. Because LPA provides infor-

mation about dislocation density and dislocation configurations, it is a valuable tool

for both experimental material characterization and for benchmarking constitutive

models based on dislocation densities.

The LPA technique was introduced in the fundamental work of Krivoglaz [214],

Wilkens [450, 451, 452] and Groma and co-workers [152, 150] who intended to develop

analytical or semi-analytical links between dislocation densities, their arrangements

and the diffraction line profile. These developments typically establish first (1) a

relationship between diffraction line profile and strain fields [384, 444, 445, 446] and
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then, (2) a relationship between moments of the strain fields (i.e. average, variance)

and dislocation density distributions [214, 450, 451, 452, 152, 150].

The first steps along this path are found in the work of Warren and Averbach

[447, 448] who separated the strain and diffracting domain size contributions to the

diffraction peaks using the Fourier transform of intensity. Their idea was to de-

convolute the measured intensities into contributions coming from crystallite size

effects and lattice distortions by simplifying the expression of the distortion Fourier

coefficient. They argued that for small values of ~g · ∆~u, the distortion Fourier co-

efficient which is the average of cosine function can be expanded as a power series

AD(~L) =< cos
(

2π~g ·∆~u(~L)
)
>= 1 − 2π2|~g|2|∆~u(~L)|2 + O(|~g|4). For small values

of |~g| and |~L|, O(|~g|4) may be neglected. Taking the natural log of AD(~L) and per-

forming a binomial expansion along with rejection of higher order terms gives the

following expression

lnAD(~L) = −2π2|~g|2
〈
|∆~u(~L)|

〉2

(6.35)

The difference in displacement can be defined in terms of εL from equation (6.12)

as

lnAD(~L) = −2π2|~g|2 〈ε〉2 |~L|2 (6.36)

Equations (6.35) and (6.36) are both known as the Warren Averbach solutions.

In general, they are only valid for very small values of ~g · ~L. However, if a Gaussian

strain distribution is assumed then they are valid for any value of ~g · ~L [446]. It

should be noted that the Warren Averbach method assumes the sine distortion Fourier

coefficient is equal to zero.

Based on these developments, Krivoglaz [214] proposed a relationship between

mean square strain and dislocation density for a random set of infinitely long and

straight dislocations. However, the deficiency of Krivoglazs approach is that the ran-

dom set of dislocations leads to a diverging mean square strain and thus a diverging
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stored energy density if the size of the crystal is increased while the dislocation density

is constant. Wilkens [450, 451, 452] solved this problem by introducing the concept

of RRD as a representative microstructure for material systems. However, the dislo-

cation distribution used by Wilkens has several limitations; the most severe being the

prediction of symmetrical line profiles which led to the development of other models.

Reliability of the Warren Averbach method for LPA purposes in case of dislocation

structures has also been questioned in the work of Wilkens [453] and Langford et al.

[229]. For a particular diffraction vector it is possible that there are large variations

in strain for distances. These effects can be captured by only if is allowed to scale

the entire domain. Besides these, other errors Treatment for some of the errors

such as truncation of intensity profiles, background determination, counting statistics,

etc. are dealt in the work of Young et al. [475], Delhez et al. [86], among others.

Improvement procedures for this method are also discussed in the work of Zorn and

Aust [485] and Delhez et al. [87].

X-ray line broadening in plastically deformed [001] Cu crystals [419] was stud-

ied based on Wilkens theoretical work and a new composite model of dislocations

introduced by Mughrabi [285]. Following which, Groma and coworkers [152, 418]

developed a theory to interpret the asymmetric line broadening of plastically de-

formed crystals and applied it to [001] Cu crystals. Groma and Székely [151] showed

that it was possible to obtain dislocation density from tails of line profiles without

assuming any particular dislocation distribution. More recently, the extended Convo-

lutional Multiple Whole Profile (eCMWP) procedure, has been very effectively used

to characterize the microstructure and dislocation structure of polycrystals and single

crystals [48, 326, 327].

In the more recent work of Balogh et al. [24], the Stokes-Wilson approximation

was used to perform diffraction simulations of more realistic microstructures resulting
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from co-planar slip of dislocations in face centered cubic (FCC) systems. Discrete dis-

location dynamics was used to generate the microstructures and the diffraction peaks,

calculated using the Stokes-Wilson approximation, were analyzed with the eCMWP

software package [326]. An error in the range of 20% was reported for the evaluated

dislocation densities. However, it is unclear whether the error contributions came

solely from the line profile analysis or a part is induced at an earlier stage while gen-

erating the diffraction peaks using the Stokes-Wilson approximation which neglects

the contribution of strain distributions and gradients. The fact that peaks represent

information originating from different regions within a grain and from several grains

suggests that details of the underlying structure may be lost in the averaging process

used in eCWMP. The accuracy of LPA models can be tested using the averaged strain

based model presented in this work.

The averaged strain based model in its present state is incapable of accounting

for the size Fourier coefficient AS(~L) contributions to the broadening of peaks. The

problem mainly arises due to the continuum approach chosen where the position of

atoms, which is necessary to account for the size effect, cannot be uniquely known.

To that end motivation can be taken from a recent work by Coleman et al. [78], who

developed an algorithm to generate virtual diffraction peaks during atomistic simu-

lations of [010] STGBs via the explicit evaluation of the structure factor in equation

(6.5) without a priori knowledge of the GB unit cell. On one hand this method is

similar to the averaged strain based method with respect to its applicability to both

electron and x-ray diffraction conditions. On the other hand, unlike the new averaged

strain based formulation, the atomistic method incorporates both the size and strain

contributions to broadening. However, these contributions cannot be separated like

in the continuum model. For domain sizes in the nano-meter range where the size

effects are dominant, the size coefficient AS(~L) contribution can be separated from

the total Fourier coefficient A(~L) obtained from the atomistic model by removing the
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distortion Fourier coefficient AD(~L) contribution from it. This will be pursued in a

future study.

6.5 Conclusion

The present study is performed for two main purposes, 1) to better understand the

fundamental implications on virtual diffraction peak generation coming from combin-

ing the incompatible theory of dislocations with the kinematic theory of diffraction

and, 2) to understand the domains of applicability of these three virtual diffrac-

tion peak generation techniques and their similarities and differences. In order to

study this, a numerical tool to generate virtual diffraction profiles from continuous

crystalline media containing line defects is developed based on: (1) the approxi-

mation of Stokes and Wilson [384], (2) the Fourier method based on displacements

[444, 445, 446], and (3) a new Fourier method based on average strains.

From a theoretical standpoint, firstly, it is found that only elastic strains and

their gradients contribute to broadening of diffraction profiles; elastic rotation, cur-

vature and its gradients, have no contribution to broadening. Secondly, with respect

to the static formulation of incompatible theory of dislocations, a fundamental dif-

ference arises between the two Fourier methods. The displacement based Fourier

method requires the definition of an arbitrarily oriented surface representative of the

displacement discontinuity induced in presence of a dislocation. Interestingly, in the

specific case of FCC lattices studied here, changing the orientation does not affect the

reflections. However, in the case of certain systems this mathematical issue would

persist: for example, some super-structure reflections of L12 ordered alloys having

super lattice dislocations would be susceptible to the problem. The average strain

based Fourier method is not affected by the orientation of this surface and therefore

gives the exact solution.

Application to FCC crystals having infinitely long straight defects in the form of i)
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a single screw dislocation, ii) low angle tilt GB, iii) RRD of dislocations highlights the

importance of spatial distributions of strain and their gradients to the diffraction pro-

files and help identify those microstructural configurations where the Stokes-Wilson

approximation [384] does not provide an accurate diffraction profile. Furthermore, it

is found that for the combination of allowed reflections and Burgers vectors in FCC

lattice, the displacement based Fourier method and the average strain based Fourier

method provide the exact same solution. The results shown in this chapter generally

agree with the results in the literature, in that in the presence of crystal lattice de-

fects internal strain fields are induced which lead to broadening or shifts in diffraction

peaks [419, 287, 416, 414].
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CHAPTER VII

CONCLUSIONS

The present research aimed at using a continuous constitutive framework to inves-

tigate the role of incompatibilities in strains and curvatures – defined at the inter-

atomic, fine, and meso scales– on the local energy and microstructure, and the bulk

mechanical response of nc/ufg materials. The idea was to test if incompatibilities in

geometric fields, specifically in lattice curvature, could be used as multi-scale metrics

for capturing information on local energy and microstructure at the inter-atomic and

fine scales and transmit it to meso scale. The methodology used to achieve this is

rather counter-intuitive because it involves using a continuous approach to model the

dynamics of defects at a length scale where the matter’s nature is inherently dis-

crete. The challenges faces during this thesis were to (1) research and adopt/develop

a kinematically and thermodynamically rigorous framework to account for the in-

compatibilties in strain and curvature at the inter-atomic, fine and meso scales, (2)

understand the role of these incompatibilities on the geometry and energy of the

local microstructure, (3) understand the contribution of residual curvatures on the

meso and macro scale bulk mechanical response, (4) test if these incompatibilities

can be characterized using X-ray or neutron diffraction, and (5) based on all the re-

sults obtained from the above challenges, assess whether curvatures can be treated

as multi-scale metrics for nc plasticity.

The first challenge highlights the need for a kinematically and thermomechanically

rigorous theoretical formulation for capturing the role of incompatibilities at inter-

atomic, fine and meso scales. To that end, the modelling framework adopted was

based on continuous representation of dislocations and disclinations. This approach
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which accounts for the incompatibilities in lattice strains and curvatures is found to be

the most appropriate to achieve the aim of this thesis. New higher order/grade elastic

constitutive laws, based on the incompatible framework were proposed to account for

the Cauchy and couple stress contributions coming from incompatibilities in elastic

strain and curvature at the fine and meso scales. These laws form an integral part

of the fine scale field disclination and dislocation mechanics theory that accounts for

polar dislocation and disclination contributions to local plasticity. At the meso-scale,

a phenomenological field disclination and dislocation mechanics model is proposed

that accounts for statistical dislocation and disclination contributions to plasticity, in

addition to those coming from polar defect densities. The fine and meso scale models

allow for a kinematically rigorous continuous treatment of interfaces and junctions at

both these scales by respecting compatibility conditions on elastic and plastic strain

and curvature at the interfaces.

In order to understand the role of strain and curvature incompatibilities on the

geometry and energy of the local microstructure, the multi-scale model is applied

at the fine scale to the case of <001> STGBs and TJs. Incompatible elastic strains

that manifest themselves within the defect cores are found to have the most significant

contribution to the elastic energy. Their contribution to the elastic energy is captured

through the higher order/grade elastic constitutive laws developed in this work. On

the other hand, the energetic contrbution of incompatible curvatures is negligible.

However, curvatures incompatibilities are necessary to characterize the GB geometry.

Static simulations were performed to generate TJ energy vs. misorientation maps

for TJs constructured from <001> STGBs. Results revealed that TJ configura-

tions corresponding to Herring’s relationship, respecting kinematic constraints, and

compatibility conditions on elastic strain and curvature, did not belong to a global

minimum. Quite interestingly, the global minimum excess energy TJ configuration

conisted of high angle GBs. Some TJ configurations were found to have a negative
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excess energy contribution. For these triple junctions the elastic curvature, and con-

sequently couple stress, contribution to the elastic energy was notably large compared

to higher energy TJ configurations. This suggests that elastic curvatures could be

generated as a consequence of relaxation mechanisms possibly through the nucleation

of sub-grain boundaries, new grains, disclinations, twins.

Using the knowledge gained from fine-scale applications, the multi-scale model

was then applied at the meso-scale to study the importance of residual curvatures on

the local and macro scale mechanical response of nc materials. Presence of residual

curvatures results in the generation of large fluctuations in local Cauchy and couple

stresses. These could play an important role in the activation of rare events such as

nucleation of new grains, twins, etc. Furthermore, these residual curvatures are found

to lower the saturation point of the macroscopic Cauchy stress response; a softening

effect that could explain the breakdown in the Hall-Petch relationship.

Finally, tests were then performed to see if incompatibilities can be characterized

using X-ray or neutron diffraction. It is found that only elastic strains and their

gradients contribute to broadening of diffraction profiles; elastic rotation, curvature

and its gradients, have no contribution to broadening.

Assessing the results obtained from each study, it can be concluded that lattice

curvatures definitely qualify to be treated as multi-scale metrics for nc plasticity.
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APPENDIX A

G-DISCLINATIONS: ELASTIC LAWS

Generalized disclinations or g-disclinations are a new type of line crystal defects, in-

troduced in the work of Acharya and Fressengeas [5], that go beyond the Volterra con-

struct of dislocations and conventional disclinations; henceforth Volterra’s disclina-

tions shall be addressed as conventional disclinations. In the presence of g-disclinations,

a discontinuity in the entire elastic distortion tensor [U e] is induced. This concept

was introduced to model phase transformations where a discontinuity in elastic dis-

tortion across the inter-phase boundaries cannot be appropriately described using

dislocations and conventional disclinations. In this chapter, the aim is to develop

elastic constitutive laws that can account for the presence of g-disclinations. First,

the geometric fields related to g-disclinations in simply connected body are derived

in a fully continuous framework. Second, the expressions for elastic constitutive laws

in linear anisotropic elasticity are then proposed.

A.1 Geometric fields of g-disclinations

Let G - the 2-distortion tensor - define the second gradient of the compatible total

dislocation field:

G = grad grad u = gradU or Gijk = ui,jk = Uij,k (A.1)

It can be decomposed into a symmetric tensor and a third-order anti-symmetric

curvature tensor as,

G = Gs + κ̃a or Gijk = G(ij)k + κ̃[ij]k (A.2)

In the presence of g-disclinations, the total 2-distortion tensor can be decomposed
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into elastic and plastic components:

G = Ge +Gp or Gijk = Ge
ijk +Gp

ijk (A.3)

The elastic and plastic components of the 2-distortion tensor can be decomposed

into compatible and incompatible contributions in presence of g-disclinations using

the Stokes-Helmholtz decomposition,

Ge = Ge‖ +Ge⊥ or Ge
ijk = G

e‖
ijk +Ge⊥

ijk (A.4)

Gp = Gp‖ +Gp⊥ or Gp
ijk = G

p‖
ijk +Gp⊥

ijk (A.5)

The compatibility of the total 2-distortion requires that the sum of the incompat-

ible elastic and plastic 2-distortions is equal to zero:

Ge⊥ +Gp⊥ = 0 or Ge⊥
ijk +Gp⊥

ijk = 0 (A.6)

Using equations (2.98) and (A.2) the following relationship between the 2-distortion

tensor the dislocation density field can be derived

α = 2X(Ge) or αij = emniG
e
mnj (A.7)

The polar g-disclination density can be defined as,

curlGe = −curlGp = π or ekmnG
e
ijn,m = −ekmnGp

ijn,m = πijk (A.8)

Then the compatibility condition on this density is given as:

div π = ∇ · π = 0 or πijk,k = 0 (A.9)

The incompatible plastic 2-distortion should vanish identically throughout the

body when the polar disclination density is equal to zero. This enforces augmented

conditions on the incompatible plastic 2-distortion:

divGp⊥ = 0 or Gp⊥
ijk,k = 0, in V and

Gp⊥ · ~n = 0 or Gp⊥
ijknk = 0, on S (A.10)
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A.2 Elastic laws for a simply connected body subjected to
surface tractions and surface hyper-traction tensors

Let a simply connected body containing an arbitrary distribution of dislocations and

g-disclinations be subjected to elastic deformation under the action of a surface trac-

tion vector ~t and a surface hyper-traction tensor λ whose anti-symmetric part corre-

sponds to the moment on its surface. This tensor λ is related to the surface moments

and third order hyper-stress tensor M as

λ = M̃ · ~n (A.11)

~m = X (λ) (A.12)

The equations of balance of mass (3.1), momentum (3.2) and moment of momen-

tum (3.9) and correspondingly the equilibrium equation (3.14) are always respected.

Under the action of the traction and surface hyper-traction tensor, the dissipation is

given by

D =

∫
S

(
~vt ·~t+ U̇ : λ

)
dS −

∫
V

ψ̇dV = 0 (A.13)

where U is the second order distortion tensor induced under the action of surface

hyper-traction tensor. Substituting equations (A.11) and (A.12) in (A.13) gives

D =

∫
S

(
~v · σ · ~n+ U̇ : M̃ · ~n

)
dS −

∫
V

ψ̇dV = 0 (A.14)

Applying the divergence theorem gives

D =

∫
V

div
(
~v · σ + U̇ : M̃

)
dV −

∫
V

ψ̇dV = 0

=

∫
V

(
~v · div σ + grad ~v : σ + grad U̇ :̇M̃ + U̇ : div M̃

)
dV −

∫
V

ψ̇dV

(A.15)

Using the equilibrium equation (3.7) and (3.10) gives

D =

∫
V

(
grad ~vt : σ + grad U̇

t
:̇M + U̇

t
: divM

)
dV −

∫
V

ψ̇dV = 0 (A.16)
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The force stress and third order hyper stress tensors can be separated into sym-

metric and anti-symmetric parts. Recall that the symmetric part of the gradient

of velocity vector is the strain rate tensor which extracts the symmetric Cauchy

stress from the asymmetric force stress tensor through the inner product. The anti-

symmetric part of the gradient of velocity is the rotation rate tensor which extracts

the anti-symmetric component of the force stress tensor. Similarly, the symmetric

and anti-symmetric components of the gradient of distortion rate tensor extract the

symmetric and anti-symmetric components of the third order hyper-stress tensor,

respectively.

D =

∫
V

 ε̇t : σs + ω̇t : σa + grad ε̇t :̇M̃
s

+grad ω̇t :̇M̃
a

+ ε̇t : div M̃
s

+ ω̇t : div M̃
a

 dV −
∫
V

ψ̇dV = 0 (A.17)

The gradient of elastic strain is symmetric with respect to its first two indices,

i.e. ε(ij),k, therefore its conjugate, the third order hyper-stress component is also

symmetric with respect to its first two indices M̃(ij)k. Similarly, the components of

third order hyper-stress tensor associated with the gradient of elastic rotation tensor

are anti-symmetric with respect to its first two indices, i.e. M̃[ij]k. Using equations

(2.39) and (2.40) and rearranging the terms gives,

D =

∫
V

 ε̇ : σs +~̇ω · 2X (σa) + grad ε̇ :̇M̃
s

+ grad ~̇ω : 2X
(
M̃

a
)

+ε̇ : div M̃
s

+ ~̇ω · 2X (divM a)

 dV

−
∫
V

ψ̇dV = 0 (A.18)

In the absence of the symmetric part of the surface distortion tensor U , the body

is subjected only to surface tractions and moments. Thus the symmetric component

of the third order hyper-stress tensor vanishes and equation (A.18) is to be compared

with the dissipation equation (3.22). The correlation of the work conjugates of the

gradient of rotation vector in these equations leads to the relationship between second

order couple stresses and the anti-symmetric part of third order hyper-stresses given
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by equations (3.35) and (3.36). Substituting for the anti-symmetric third order hyper-

stress tensor, the term 2X
(
divM̃

a
)

becomes divM . The gradient of the elastic

strain tensor can be defined as the symmetric part of the third order 2-distortion

tensor. As we only deal with the elastic deformations, the plastic strain rate is zero.

Therefore only the elastic strain rate enters the expression of dissipation. The gradient

of the rotation vector is the deviatoric second order curvature tensor; it extracts only

the deviatoric component of the second order curvature tensor. Using the equilibrium

equation (3.10) for couple stresses, the final expression of the dissipation reads

D =

∫
V

(
ε̇e :

(
σs + div M̃

s
)

+
(
Ġ
e
)s

:̇M s + κ̇e : M
)
dV −

∫
V

ψ̇dV = 0(A.19)

In the absence of defects, the field variables - elastic strain, symmetric part of

elastic 2-distortion tensor and the elastic curvature, are all compatible. In the sole

presence of dislocations, the elastic strain has an additional incompatible component

while the other state variables are compatible. In the presence of both dislocations

and conventional disclinations, the elastic strain and curvature both have additional

incompatible components, whereas the symmetric part of 2-distortion is compatible.

In the presence of dislocations and G-disclinations, all the state variables have an

additional incompatible component. An interesting peculiarity of equation (A.19) is

the coupling of the symmetric part of the third order hyper-stress tensor with the

elastic strain. The simplest form of free elastic energy density is chosen as:

ψ = ψ (εe, (Ge)s,κ̃e) (A.20)

Following the analogy from equations (3.25) and (3.26), the elastic constitutive

laws are,

σs + div M̃
s

=
∂ψ (εe, (Ge)s,κe)

∂εe
(A.21)

M̃
s

=
∂ψ (εe, (Ge)s,κe)

∂(Ge)s
(A.22)

MD =
∂ψ (εe, (Ge)s,κe)

∂κe
(A.23)
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It directly follows from the form of dissipation equation (A.19) and the elastic

laws (A.21) and (A.22) that the elastic strains tensor and the symmetric part of

the 2-distortion tensor are coupled. When the distortion of the body is compatible,

or when only dislocations are present, the symmetric part of the 2-distortion tensor

(Ge)s is the gradient of the elastic strain (grad εe). The anti-symmetric part of the

2-distortion tensor (Ge)a equals the anti-symmetric third order curvature tensor κa

and is related to the second order curvature tensor via equations (2.52) and (2.51).

If g-disclinations are not present in the body, then the expressions of the Cauchy and

couple stresses reduce to (3.25) and (3.26).

In order to derive the elastic laws in a linear case, the following quadratic form of

free energy density is adopted

ψ =
1

2
U e

(ij)C(ij)(kl)U
e
(kl) + U e

(ij)B(ij)[kl]mκ
e
[kl]m + κe[ij]kD[ij]k(lm)U

e
(lm)

+
1

2
κe[ij]kA[ij]k[lm]nκ

e
[lm]n + U e

(ij)E(ij)(kl)mG
e
(kl)m +Ge

(ij)kF(ij)k(lm)U
e
(lm)

+κe[ij]kH[ij]k(lm)nG
e
(lm)n +Ge

(ij)kJ(ij)k[lm]nκ
e
(lm)n +

1

2
Ge

(ij)kK(ij)k(lm)nG
e
(lm)n

(A.24)

The elastic constitutive laws are obtained by taking partial derivatives of the free

energy density with respect to U e
(pq), G

e
(pq)r and κe[pq]r,

σ(pq) + M̃(pq)r,r = C(pq)(kl)U
e
(kl) +B(pq)[kl]mκ

e
[kl]m

+ κe[ij]kD[ij]k(pq) + E(pq)(kl)mG
e
(kl)m +Ge

(ij)kF(ij)k(pq) (A.25)

M̃(pq)r = U e
(ij)E(ij)(pq)r + F(pq)r(lm)U

e
(lm)

+ κ̃e[ij]kH[ij]k(pq)r + J(pq)r[lm]nκ
e
(lm)n +K(pq)r(lm)nG

e
(lm)n (A.26)

M̃[pq]r = U e
(ij)B(ij)[pq]r +D[pq]r(lm)U

e
(lm)

+ A[pq]r[lm]nκ
e
[lm]n +H[pq]r(lm)nG

e
(lm)n +Ge

(ij)kJ(ij)k[pq]r (A.27)

The elastic field variables are compatible in absence of defects, the elastic strain

has an additional incompatible contribution in the sole presence of dislocations, and

in the presence of both dislocations and G-disclinations all the field variables have an
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additional incompatible component. The elastic constants A, B, C and D fulfil the

conditions (3.29) - (3.32) imposed by the symmetries of the associated field variables

and the positive definiteness of the free energy density. Similar conditions can be

extrapolated for the constants E, F , H , J and K.
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APPENDIX B

HIGHER ORDER ELASTICITY TENSORS

B.1 Isotropic elasticity tensors

The expressions for isotropic tensors of order greater than 4 presented in [230, 192]

and derived in [385] are revisited here. In the following, first the expressions for 5th

order elasticity tensors B and D are developed following the methodology of Suiker

and Chang [385]. This is followed by the expression of 6th order tensor A

The relationship between the 5th order isotropic tensor Bijklm and the formal

orthogonal invariant polynomial function B
(
u(1), u(2), u(3), u(4), u(5)

)
associated

with vectors u(1), u(2), u(3), u(4) and u(5) is,

B
(
u(1),u(2),u(3),u(4),u(5)

)
= Bijklmu

(1)
i u

(2)
j u

(3)
k u

(4)
l u(5)

m (B.1)

The function B
(
u(1),u(2),u(3),u(4),u(5)

)
can be written as a linear combination

of the independent basic invariants [385] as:

B(u(1), u(2), u(3), u(4), u(5))

= Bl det
[
u(1), u(2), u(3)

]
F
(
u(4), u(5)

)
+ B2 det

[
u(1), u(2), u(4)

]
F
(
u(3), u(5)

)
+ B3 det

[
u(1), u(2), u(5)

]
F
(
u(3), u(4)

)
+ B4 det

[
u(1), u(3), u(4)

]
F
(
u(2), u(5)

)
+ B5 det

[
u(1), u(3), u(5)

]
F
(
u(2), u(4)

)
+ B6 det

[
u(1), u(4), u(5)

]
F
(
u(2), u(3)

)
+ B7 det

[
u(2), u(3), u(4)

]
F
(
u(1), u(5)

)
+ B8 det

[
u(2), u(3), u(5)

]
F
(
u(1), u(4)

)
+ B9 det

[
u(2), u(4), u(5)

]
F
(
u(1), u(3)

)
+ B10 det

[
u(3), u(4), u(5)

]
F
(
u(1), u(2)

)

(B.2)

Substituting the equations det
[
u(i)u(j)...u(m)

]
= eij...ku

(1)
i u

(2)
j ...u

(m)
k and the Kro-

necker delta gives,

Bijklm =

B1eijkδlm + B2eijlδkm + B3eijmδkl + B4eiklδjm + B5eikmδjl

+ B6eilmδjk +B7ejklδim +B8ejkmδil +B9ejlmδik +B10eklmδij

(B.3)
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In the general case, the tensor Bijklm has 35 = 243 non-zero independent coeffi-

cients. However in the isotropic case these reduce to only 10 independent non-zero

coefficients. This is derived from the principle of objectivity.

Following a similar spectral decomposition with respect to the coefficients ij and

kl as for Cijkl gives,

Bijklm = B(ij)(kl)m +B(ij)[kl]m +B[ij](kl)m +B[ij][kl]m (B.4)

A spectral decomposition of such a kind involving only the specific pairs of indices

ij and kl is obtained from the knowledge of the symmetries of the terms associated

with it. From the adopted form of free energy density (3.28) the only contribution

of the cross term involving B comes from the 2nd term in the above relationship.

Considering the symmetry of B with respect to the indices ij gives

B(ij)klm =
1

2
(Bijklm +Bjiklm) (B.5)

Recall that,

Bijklm =

B1eijkδlm + B2eijlδkm + B3eijmδkl + B4eiklδjm + B5eikmδjl

+ B6eilmδjk +B7ejklδim +B8ejkmδil +B9ejlmδik +B10eklmδij

(B.6)

Interchanging the indices i and j gives

Bjiklm =

B1ejikδlm + B2ejilδkm + B3ejimδkl + B4ejklδim + B5ejkmδil

+ B6ejlmδik +B7eiklδjm +B8eikmδjl +B9eilmδjk +B10eklmδij

(B.7)

Substituting the above in equation (B.5) gives;

B(ij)klm =
1

2


(B4 +B7)eiklδjm + (B5 +B8)eikmδjl + (B6 +B9)eilmδjk

+(B4 +B7)ejklδim + (B5 +B8)ejkmδil + (B6 +B9)ejlmδik

+2B10eklmδij

 (B.8)

Note that the coefficients B1, B2, and B3 have vanished due to the symmetry
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conditions and there are only 4 independent coefficients and 7 terms that exist. Con-

sidering the anti-symmetry with respect to the k and l indices gives,

B(ij)lkm =
1

2


(B4 +B7)eilkδjm + (B5 +B8)eilmδjk + (B6 +B9)eikmδjl

+(B4 +B7)ejlkδim + (B5 +B8)ejlmδik + (B6 +B9)ejkmδil

+2B10elkmδij

 (B.9)

From equations (B.8) and (B.9) and using,

B(ij)[kl]m =
1

2

(
B(ij)klm −B(ij)lkm

)
(B.10)

the expression for B(ij)[kl]m can be derived

B(ij)[kl]m =
1

4



2(B4 +B7)eiklδjm + (B5 +B8 −B6 −B9)eikmδjl

−(B5 +B8 −B6 −B9)eilmδjk + 2(B4 +B7)ejklδim

+(B5 +B8 −B6 −B9)ejkmδil − (B5 +B8 −B6 −B9)ejlmδik

+4B10eklmδij


(B.11)

Note that the number of independent coefficients have now reduced to 3. Let the

terms be denoted as B
′
1 = 2(B4 + B7), B

′
2 = (B5 + B8 − B6 − B9) and B

′
3 = 4B10.

Then,

B(ij)[kl]m =
1

4


B
′

1 (eiklδjm + ejklδim)

+B
′

2 (eikmδjl − eilmδjk + ejkmδil − ejlmδik)

+B
′

3eklmδij

 (B.12)

Following the same analogy as for Bijklm the non-zero terms for Dijklm in the

isotropic case are given as,

Dijklm = d1eijkδlm+d2eijlδkm+d3eijmδkl+d4eiklδjm+d5eikmδjl+d6eilmδjk

+d7ejklδim+d8ejkmδil + d9ejlmδik + d10eklmδij

(B.13)

Following a similar spectral decomposition with respect to the coefficients ij and

lm gives;

Dijklm = D(ij)k(lm) +D(ij)k[lm] +D[ij]k(lm) +D[ij]k[lm] (B.14)
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From the constitutive relationship on couple stresses [281], the tensor D extracts

the symmetric part of the distortion tensor and the anti-symmetric part of the gra-

dient of distortion tensor. Hence, Dijklm is symmetric with respect to lm and anti-

symmetric with respect to ij.

The anti-symmetry with respect to ij is considered first;

D[ij]klm =
1

2


2d1eijkδlm + 2d2eijlδkm + 2d3eijmδkl

+ (d4 − d7) eiklδjm + (d5 − d8) eikmδjl + (d6 − d9) eilmδjk

− (d4 − d7) ejklδim − (d5 − d8) ejkmδil − (d6 − d9) ejlmδik

(B.15)

The total number of coefficients has reduced from 10 to 6. Let a = d4 − d7,

b =d8−d5 and c =D9−D6. Considering the symmetry with respect to the indices lm

gives,

D[ij]k(lm) =
1

4


4d1eijkδlm + 2 (d2 + d3) eijlδkm + 2 (d2 + d3) eijmδkl

− (a+ b) eiklδjm − (a+ b) eikmδjl

+ (a+ b) ejklδim + (a+ b) ejkmδil

(B.16)

Only 3 independent coefficients remain. Let D
′
1 = d1, D

′
2 = 1

2
(d2 + d3) and

D
′
3 = − (a+ b) /4, then

D[ij]k(lm) = D
′

1eijkδlm +D
′

2 (eijlδkm + eijmδkl)

+ D
′

3 (eiklδjm + eikmδjl − ejklδim − ejkmδil)
(B.17)

Similarly for the 6th order isotropic constant Aijklmn, a spectral decomposition

into symmetric and anti-symmetric part with respect to the indices ij and lm gives

Aijklmn = A(ij)k(lm)n + A(ij)k[lm]n + A[ij]k(lm)n + A[ij]k[lm]n (B.18)

In the general case, the tensor A has 36 = 729 non-zero terms. However in the
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isotropic case this reduces to only 15 independent non-zero terms.

Aijklmn =



a1δijδklδmn + a2δijδkmδln + a3δijδknδlm + a4δikδjlδmn

+a5δikδjmδln + a6δikδjnδlm + a7δilδjkδmn + a8δilδjmδkn

+a9δilδjnδkm + a10δimδjkδln + a11δimδjlδkn + a12δimδjnδkl

+a13δinδjkδlm + a14δinδjlδkm + a15δinδjmδkl


(B.19)

Considering the first anti-symmetry in Aijklmn with respect to the ij indices,

A[ij]klmn =
1

2
[Aijklmn − Ajiklmn] (B.20)

Interchanging the indices i and j gives,

Ajiklmn =



a1δijδklδmn + a2δijδkmδln + a3δijδknδlm + a4δjkδilδmn

+a5δjkδimδln + a6δjkδinδlm + a7δjlδikδmn + a8δjlδimδkn

+a9δjlδinδkm + a10δjmδikδln + a11δjmδilδkn + a12δjmδinδkl

+a13δjnδikδlm + a14δjnδilδkm + a15δjnδimδkl


(B.21)

Substituting equations (B.19) and (B.21) in equation (B.20) gives,

A[ij]klmn=

1

2



(a7 − a4)δilδjkδmn + (a6 − a13)δikδjnδlm + (a5 − a10)δikδjmδnl

−(a7 − a4)δikδjlδmn + (a8 − a11)δilδjmδkn + (a9 − a14)δilδjnδkm

−(a5 − a10)δimδjkδnl − (a8 − a11)δimδjlδkn + (a12 − a15)δimδjnδkl

−(a6 − a13)δinδjkδlm − (a9 − a14)δinδjlδkm − (a12 − a15)δinδjmδkl


(B.22)

The original 15 non-zero independent coefficients have reduced to 6 with 12 dif-

ferent terms. Next consider the anti-symmetry over the indices lm.

A[ij]k[lm]n =
1

2

[
A[ij]klmn − A[ij]kmln

]
(B.23)

Interchanging the indices l and m gives

A[ij]kmln=
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1

2



(a7 − a4)δimδjkδln + (a6 − a13)δikδjnδlm + (a5 − a10)δikδjlδnm

−(a7 − a4)δikδjmδln + (a8 − a11)δimδjlδkn + (a9 − a14)δimδjnδkl

−(a5 − a10)δilδjkδnm − (a8 − a11)δilδjmδkn + (a12 − a15)δilδjnδkm

−(a6 − a13)δinδjkδlm − (a9 − a14)δinδjmδkl − (a12 − a15)δinδjlδkm


(B.24)

For the sake of simplicity let us rename some of the coefficients as α = a7 − a4,

β = a6 − a13 , γ = a5 − a10, κ = a8 − a11, ξ = a9 − a14 and µ = a12 − a15.

From (B.22), (B.23) and (B.24),

A[ij]k[lm]n =
1

4



(α + γ)δilδjkδmn + (α + γ)δikδjmδnl − (α + γ)δikδjlδnm

−(α + γ)δimδjkδln + (ξ − µ)δilδjnδkm + (ξ − µ)δinδjmδkl

−(ξ − µ)δimδjnδkl − (ξ − µ)δinδjlδkm

+2κδilδjmδkn − 2κδimδjlδkn


(B.25)

Replacing A
′
1 = (α + γ)/4 , A

′
2 = (ξ − µ)/4 and A

′
3 = κ/2

A[ij]k[lm]n = A
′

1 (δilδjkδmn + δikδjmδnl − δikδjlδnm − δimδjkδln)

+ A
′

2 (δilδjnδkm + δinδjmδkl − δimδjnδkl − δinδjlδkm)

+ A
′

3 (δilδjmδkn − δimδjlδkn)

(B.26)

Finally, this gives just 3 non-zero coefficients and 10 terms. The quadratic form

of elastic energy density imposes another symmetry condition on A i.e. Aijklmn =

Almnijk which is implicit in equation (B.26).

B.1.1 Transforming 5th and 6th order elasticity tensors to 4th order

For the sake of rigor, the elastic constitutive laws presented in section (3.1.1) are

developed here using second order elastic curvatures. Using the relationship between

second and third order elastic curvatures and couple stresses from equation (2.51)

and (3.35), respectively, the elastic laws (3.43) and (3.44) can be rewritten as:

σ(pq) = C(pq)(kl)ε
e(‖+⊥)
(kl) −B(pq)[kl]meklnκ

e(‖+⊥)
nm − eijnD[ij]m(pq)κ

e(‖+⊥)
nm
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MD
sr = −espqεe(‖+⊥)

(lm) B(lm)[pq]r − espqD[pq]r(lm)ε
e(‖+⊥)
(lm) + espqA[pq]r[lo]melonκ

e(‖+⊥)
nm (B.27)

Without the loss of generality, the following relationships can be defined:

B(pq)nmκ
e(‖+⊥)
nm = −B(pq)[kl]meklnκ

e(‖+⊥)
nm − eijnD[ij]m(pq)κ

e(‖+⊥)
nm

Dsr(nm)ε
e(‖+⊥)
nm = −espqεe(‖+⊥)

(lm) B(lm)[pq]r − espqD[pq]r(lm)ε
e(‖+⊥)
(lm)

Asrnmκ
e(‖+⊥)
nm = espqA[pq]r[lo]melonκ

e(‖+⊥)
nm (B.28)

Finally, the elastic constitutive laws can be written in terms of 4th order elasticity

tensors and second order elastic curvature tensors as,

σs = C : εe(‖+⊥) +B : κe(‖+⊥) or σ(pq) = C(pq)(kl)ε
e(‖+⊥)
(kl) +B(pq)nmκ

e(‖+⊥)
nm

MD = D : εe(‖+⊥) +A : κe(‖+⊥) or MD
sr = Dsr(nm)ε

e(‖+⊥)
nm + Asrnmκ

e(‖+⊥)
nm (B.29)
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APPENDIX C

MULTI-SCALE DESCRIPTIONS OF INTERFACES IN

CONTINUOUS MEDIA

Thus far, the implications of using a continuous approach as opposed to a discrete

approach have been discussed with respect to the representation of line crystal defects.

In this section, the implications of modelling interfaces - specifically GBs -, and TJs

in a continuum are discussed.

A continuous description of GB interfaces may be attributed a finite volume at

the interatomic length scale whereby individual defects can be represented by their

respective polar density fields. This is in accordance with the atomistic description of

GBs which features elementary structures spreading over a finite-width (non-singular)

layer - sometimes as thin as a nano-meter [387]. On the other hand, at the meso-

scopic scale resolution these interfaces are modelled as singular surfaces i.e. having

an infinitesimal thickness. Prominent amongst the models describing singular inter-

faces are those using a surface defect description - for example, Frank-Bilby surface

dislocations [131, 38]. Such a description becomes necessary when modelling singular

interfaces across which there is a discontinuity of elastic/plastic strain and/or cur-

vature fields. In this section, the specific intent is to clarify the issue of continuity

vs. discontinuity of the elastic/plastic strain and curvature tensor fields across a sur-

face of discontinuity, in the framework of both, the fine scale FDDM model and the

meso-scale PMFDDM model. Although discontinuities in these fields are allowed,

necessary tangential continuity conditions on the elastic strain and curvature tensors

will be derived at smooth interfaces, and some of their implications investigated. This

forthcoming work derives motivation from an earlier investigation of the continuity
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conditions on the plastic distortion rate in the field theory of dislocations [3].

C.0.2 Tangential continuity of elastic/plastic strain and curvature fields
at Interfaces

In the following, the tangential continuity conditions on elastic/plastic strain and

curvature fields necessary for a fully continuous treatment of interfaces. These have

been discussed in detail in the works of Fressengeas et al. [136] and Upadhyay et al.

[420].

C.0.2.1 Compatibility condition for a single interface

Consider a smooth surface of discontinuity I, separating the body D into two domains

D+ and D−. A smooth surface is the one without any discontinuities in its tangent

plane orientation field. For the sake of simplicity, this interface I is assumed to remain

attached to the material. At any point P on I, let the normal vector ~n to the interface

is oriented from D− toward D+. Also, let~l and ~t = ~n×~l be two unit vectors belonging

to the tangent plane to the interface as shown in figure C.1. I may be used to model

Figure C.1: Burgers circuit across an interface I separating the body D into domains
D−, D+. ~n is the unit normal to the interface, and ~t = ~n × ~l the normal to the
bounded surface S.

a GB in a polycrystal. In this case, the GB is seen as having no width. Continuum
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mechanics requires that the displacement ~u and traction vector σ.~n be continuous

across the interface. Hence
[
~u
]

= 0 and
[
σ.~n

]
= 0. The continuity of the traction

vector is also reflected by the continuity of the normal part, σn = σ·~n⊗~n, of the stress

tensor:
[
σn
]

= 0. However, the tangential part of the stress tensor, σt = σ − σn,

can be discontinuous across the interface. This discontinuity is expressed by:

∃~l ∈ I,
[
σ
]
·~l 6= 0 (C.1)

which implies that: [
σ
]
× ~n 6= 0 (C.2)

In contrast, the continuity of the displacement at the interface requires tangential

continuity of the total distortion U :

∀~l ∈ I,
[
U
]
·~l = 0 (C.3)

a condition also rendered as: [
U
]
× ~n = 0 (C.4)

or, in terms of the normal and tangential parts of the distortion,
[
Un

]
and

[
U t

]
, as:

[
U t

]
=
[
U
]
−
[
Un

]
=
[
U
]
−
[
U
]
· ~n⊗ n = 0 (C.5)

This tangential continuity condition is known as Hadamard’s compatibility con-

dition [168]. It does not impose any requirement on the normal discontinuity
[
Un

]
across the interface. Furthermore, it does not deal with the continuity vs. discontinu-

ity of the elastic/plastic curvature and strain tensors at the interface. In the following

it will be shown that if the choice is made to represent the incompatibility arising

from the presence of lattice defects in the interface area in a continuous manner,

additional continuity conditions on the elastic curvature and strain at the interface

need to be accounted for.

Consider a rectangular closed circuit C lying across the interface and bounding

a surface S oriented by ~t, in the manner shown in figure C.1. Rewriting equations
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(2.106) and (2.108) in the present context, the net Frank’s vector Ω of the disclinations

threading S is such that:

∀~l ∈ I, Ω =

∫
C

κe · d~r =

∫
S

θ ·~tdS (C.6)

Provisionally, the distribution of disclinations in S is assumed to include not only

a continuous distribution of disclinations θ in each domain D− and D+, but also

a singular distribution θ(I) along the interface I. This singular term represents

”surface-disclinations” through a density of (adimensional) Frank’s vectors per m in

the direction ~l. If the circuit C is collapsed onto point P by letting h+ and h− tend

to zero, and L shrinks along the direction ~l, equation (C.6) becomes:

∀~l ∈ I,
[
κe
]
·~l = θ(I) ·~t (C.7)

Essentially, the bulk density θ distributed in D+ and D− disappears in this limit.

Thus, equation (C.7) provides the density θ(I) of surface-disclinations needed to

accommodate a tangential discontinuity of the elastic curvature
[
κe
]

in no width

across the interface. It has no implication on its normal discontinuity. However,

if the choice is made to describe the interface in a continuous manner and a small

resolution length scale is used to render the fine structure of the boundary, then the

surface-disclination concept must be surrendered. This modeling choice amounts to

acknowledging that the accommodation of a finite variation of the tangential part

of the elastic curvature takes place in a finite material layer, perhaps as thin as a

few nano-meters and containing a few atomic rows, but non discrete. In this case,

equation (C.7) becomes:

∀~l ∈ I,
[
κe
]
·~l = 0 (C.8)

The meaning of equation (C.8) is that, in the absence of surface-disclinations,

tangential continuity of the elastic curvature tensor is required in a continuous model.

Equation (C.8) is equally transcribed as:[
κe
]
× ~n = 0 (C.9)
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or in terms of its normal and tangential components,
[
κe
]
n

and
[
κe
]
t
, as:

[
κe
]
t

=
[
κe
]
−
[
κe
]
n

=
[
κe
]
−
[
κe
]
· n⊗ ~n = 0 (C.10)

Continuity of the normal component of the elastic curvature tensor is not re-

quired by equation (C.9), nor is it accommodated by the surface-disclination density

in equation (C.7).1 The continuity of the tangential component of the elastic curva-

ture implies that spatial correlations are existing between the lattice rotations of the

neighbouring grains, because limiting values of the curvature from the left and from

the right of the interface must be equal. Since it is not accommodated at the interface

by surface-disclinations, a finite variation of the tangential component of the elastic

curvature over the boundary area must be accommodated by the bulk disclination

density θ in a layer across the interface. However, the width of this layer is not im-

plied by equation (C.9). Experimental evidence of such a length scale was provided

in various materials after diverse strain paths, in the form of the scaling range for the

power law dependence of the probability density of a certain grain misorientation vs.

the inter-granular distance [31].

Similar continuity constraints can be obtained for the plastic curvature and plastic

curvature rate. Since the total rotation ~ω is compatible, taking the line integral of

the total curvature described in equation (2.90) along the closed circuit C shows that:

∀~l ∈ I,
∫
C

κp.d~r = −
∫
C

κe.d~r. (C.11)

Hence, it is straightforward to show from equations (C.8), (C.9) and (C.11) that

tangential continuity of the plastic curvature is also required:

[
κp
]
× ~n = 0 (C.12)

1The occurrence of a normal discontinuity of the elastic curvature tensor implies that the conti-
nuity required in equation (2.92) for the calculation of the disclination density tensor may not be
satisfied for three of its components. Thus, discontinuity of the involved disclination densities may
occur at the interface.
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when surface-disclinations are absent. For small rotations, the derivation with respect

to time of equation (C.12) involves only partial time derivatives. Thus, tangential

continuity also holds for the plastic curvature rate:[
κ̇p
]
× n = 0 (C.13)

This rate condition may also be obtained by integrating the transport equation of

disclinations (3.97) over a ”pillbox” set across an arbitrary area patch, in the limit

when such a patch contracts onto a surface of discontinuity in the material (see a

derivation in [3], in the context of dislocation transport).

The conservation of the Burgers vectors content across the interface also gives rise

to additional tangential continuity conditions. Using equations (2.107) and (2.109),

the net Burgers vector b of the dislocations threading S is such that:

∀~l ∈ I, b =

∫
C

(εe − κe × r).d~r =

∫
S

(α− θ × ~r) ·~tdS (C.14)

It is assumed that a continuous distribution of dislocations and disclinations is

existing in the domains D− and D+ and also, provisionally, singular distributions

α(I) and θ(I) along the interface I. The term α(I) represents surface-dislocations

through a density of Burgers vectors per m in the direction ~l. When the circuit C

collapses onto point P in the limit, when H+, h− and L tend to zero, equation (C.14)

becomes

∀~l ∈ I,
[
εe − κe × ~r0

]
·~l = (α(I)− θ(I)× ~r0) ·~t (C.15)

where ~r0 denotes the location of point P in the reference frame. In a way similar

to equation (C.7), equation (C.15) provides information on the density of surface-

dislocations and surface-disclinations needed to accommodate a discontinuity in the

elastic displacement across the singular interface I. Now, if choice is made to describe

the interface in a continuous manner, the surface-defect concept must be surrendered

and equation (C.15) reduces to:

∀~l ∈ I,
[
εe − κe × ~r0

]
·~l = 0 (C.16)
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Equation (C.16) describes the tangential continuity of the tensor εe − κe × ~r0 at

the interface. An equivalent form, similar to equation (C.9), is:

[
εe − κe × ~r0

]
× ~n = 0 (C.17)

or in terms of the normal and tangential components
[
εe−κe×~r0

]
n

and
[
εe−κe×~r0

]
t
:

[
εe−κe×~r0

]
t

=
[
εe−κe×~r0

]
−
[
εe−κe×~r0

]
n

=
[
εe−κe×~r0

]
−
[
εe−κe×~r0

]
·~n⊗~n = 0

(C.18)

The normal component
[
εe − κe × ~r0

]
n

is left unconstrained by equation (C.17).

Note that, since the total displacement and rotation of the body are compatible, the

following integral is zero:

∀~l ∈ I,
∫
C

(ε− grad ~ω × ~r) · d~r = 0 (C.19)

Substracting equation (2.107) from equation (C.19), it is found that an alternative

form of the Burgers vector is:

b = −
∫
C

(εp − κp × ~r).d~r. (C.20)

Then, following the above line of reasoning, an alternative relation to equation

(C.17), using the plastic strain and curvature tensors is found:

[
εp − κp × ~r0

]
× ~n = 0. (C.21)

At small transformations, a derivation of equation (C.21) with respect to time

involves only partial time derivatives, and the following result on the plastic strain

rate and curvature rate is obtained:

[
ε̇p − κ̇p × ~r0

]
× ~n = 0. (C.22)

If the reference point is chosen in the interface, such that ~r0 = 0, equations (C.17),

(C.21) and (C.22) condense into simpler relations involving only the strain component
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of the incompatibility. Note that equation (C.21) was given in this simplified form by

Hirth [186], on the basis of heuristic arguments. The curvature-induced incompatible

plastic displacement κp × ~r0 and the related disclinations were not considered in

this paper, where dislocation-based modeling of GBs was discussed. In such context,

tangential continuity should apply not only to the symmetric part of the plastic

distortion rate tensor (the plastic strain rate tensor) but also to its skew-symmetric

part (the plastic rotation rate tensor) [3]. The tangential continuity conditions (C.17),

(C.21) and (C.22) differ from their counterparts in the theory of dislocation fields

[3, 31, 260] because the elastic/plastic rotation and rotation rate tensors are undefined

in a theory of crystal defects involving disclinations. Stated differently, the tangential

continuity conditions (C.9), (C.12) and (C.13) do not hold in the theory of dislocation

fields because the elastic/plastic curvature and curvature rate tensors are assumed to

be integrable in the latter.

In the framework of the meso-scale phenomenological field disclination and dis-

location mechanics model, the conservation of the Frank’s and Burgers vectors also

implies jump conditions on the meso-scopic plastic curvature rate and strain rate,

respectively, at the interface. At the meso-scale, the latter are always seen as surfaces

of discontinuity. In the simple case of a material surface of discontinuity, stationary

with respect to the material, the tangential continuity conditions are:

[
κ̇p + κ̇p∗

]
× ~n = 0 (C.23)[

ε̇p + (Lp)s − (κ̇p + κ̇p∗)× ~r0

]
× ~n = 0, (C.24)

The conditions (C.23) and (C.24) imply that the incremental plastic tangential

rotation and displacement are continuous at the surface of discontinuity. When the

resolution length scale becomes large enough: κ̇p = 0 and ε̇p = 0 and the averaged

theory reduces to crystal plasticity. However, appending the residual tangential con-

tinuity conditions,
[
κ̇p∗
]
×~n = 0 and

[
(Lp)s− κ̇p∗×~r0

]
×~n = 0, to the latter makes

327



this conventional theory non-local, as limiting values of fields from the two sides of the

surface of discontinuity are required to have some relationship. Such a non-locality

is expected to affect the distribution of plastic strain and rotation rates in the vicin-

ity of GBs (see [330] in the case of pure dislocations). In the work of Richeton et al.

[330] grain-to-grain interactions are modeled, which allowed retrieving size effects and

loading path-dependency in particle-reinforced alloys. However, the features of GB

in relation with the non-locality of elasticity are lost in the coarse-graining process,

because their characteristic length-scale is much too small to be perceived at this

scale of resolution.

C.0.2.2 Compatibility condition for multiple junctions

Consider a multiple junction J where N interfaces, with respective discontinuities in

the elastic curvature
[
κe
]
i
; i ∈ (1, N), connect along a single line. In practice, mostly

triple-junctions (N = 3) are observed when the interfaces represent GBs. If the choice

of continuous modeling is made, closure requires that the sum of all discontinuities

vanish at the multiple junction:

N∑
i=1

[
κe
]
i

= 0 (C.25)

N∑
i=1

[
εe − κe × ~r0

]
i

= 0 (C.26)

A reference grain is used to start and finish a closed circuit about a multiple

junction. Summing the relations (C.10) for all interfaces, and using equation (C.25),

it is seen that the normal discontinuities in the elastic curvature need to satisfy a

Kirchhoff-like compatibility condition at the multiple junction:

N∑
i=1

[
κe
]
i
· ni ⊗ ~ni = 0 (C.27)

Similarly, for a multiple junction located at ~r0, it can be shown from equations

(C.18) and (C.26) that the normal discontinuities
[
εe − κe × ~r0

]
n

must satisfy the
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compatibility condition:

N∑
i=1

[
εe − κe × ~r0

]
i
· ~ni ⊗ ni = 0 (C.28)

Additional compatibility conditions are obtained for the normal discontinuities in

the plastic curvature and curvature rate:

N∑
i=1

[
εp − κp × ~r0

]
i
· ~ni ⊗ ni = 0 (C.29)

N∑
i=1

[
ε̇p − κ̇p × ~r0

]
i
· ni ⊗ ~ni = 0 (C.30)

C.1 Power dissipation from a bicrystal with a singular in-
terface

Consider a bicrystal of volume V bounded by a surface S undergoing elastic defor-

mation under the action of surface tractions ~t and moments ~m. Let this bicrystal

consist of an infinitesimally thin interface Ω separating volumes D− and D+ as shown

in figure C.1 and no other defects. Since the interface is infinitesimally thin, therefore

D = D+ +D−. The power dissipated during elastic deformation of this bicrystal is:

D =

∫
S

(
~v ·~t+ ~̇ω · ~m

)
dS −

∫
D

ψ̇dV (C.31)

which is similar to equation (3.15). The equilibrium condition requires that the

traction and moment vectors be continuous in the direction normal to the interface

Ω . Therefore,

σ+ · ~n = σ− · ~n = σ · ~n = ~t on Ω (C.32)

σ+ · ~n = σ− · ~n = σ · ~n = ~t on Ω (C.33)

where σ+, σ− and M+, M− are the Cauchy and couple stress tensors from the

side D+ and D− , respectively, at the interface. These continuity equations can be

used to obtain the following relationships[
~v ·~t

]
= [~v · σ · ~n] = [~v] · σ · ~n (C.34)

329



[
~̇ω · ~m

]
=
[
~̇ω ·M · ~n

]
=
[
~̇ω
]
·M · ~n (C.35)

Traction and moment continuity also implies that sigma · ~n = 1
2

(σ+ + σ−) · ~n

and M · ~n = 1
2

(
M+ +M−) · ~n at the interface. In order to satisfy the Hadamard

compatibility condition i.e. satisfying the tangential continuity along the interface,

velocity jump [~v] at the interface can be related to jump in total strain tensor [ε] as

[346]:

[~v] = − [ε] · ~nvn (C.36)

where vn is the component of velocity normal to the interface. Similarly, tangential

continuity requires that the jump in rotation rate
[
~̇ω
]

be related to the jump in total

curvature field as:

[
~̇ω
]

= − [κ] · ~nω̇n (C.37)

where ω̇n is the component of rotation rate normal to the interface. The tangen-

tial continuity also implies that the tangential component of the jump in strain and

curvature field is equal to zero, therefore,

[ε] = − [ε] ~n⊗ ~n = [εn] (C.38)

[κ] = − [κ] ~n⊗ ~n = [κn] (C.39)

These relationships can be substituted in equations for velocity and rotation rate

to obtain

[~v] = − ([ε] ~n⊗ ~n) · ~nvn (C.40)[
~̇ω
]

= − ([κ] ~n⊗ ~n) · ~nω̇n (C.41)

Finally,

[~v] · σ · ~n = −{([ε] ~n⊗ ~n) · ~nvn} · (σ · ~n) = [ε] : σvn (C.42)
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[
~̇ω
]
·M · ~n = −{([κ] ~n⊗ ~n) · ~nω̇n} · (M · ~n) = [κ] : M ω̇n (C.43)

Using the divergence theorem, the dissipation can now be written as

D =

∫
D

(σ : ε+M : κ) dV

+

∫
Ω

(
1

2

(
σ+ + σ−

)
: [ε] +

1

2

(
M+ +M−) : [κ]

)
dS −

∫
V

ψ̇dV (C.44)

Note here that due to the singular interface, the Helmholtz free energy density

rate ψ̇ has contributions coming only from internal energy stored in volume D. In

the presence of dislocations and disclinations, the non-locality associated with elastic

and plastic curvatures and their rates need to be accounted for in the above equation.
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APPENDIX D

KELVIN DECOMPOSITION OF AN ELASTICITY

TENSOR

In this section, the basis tensors obtained from the Kelvin decomposition of the

elasticity tensors C and A are developed. For the sake of simplicity, the superscript

D for the deviatoric couple stress and elastic curvatures tensor along with the s for

the symmetric Cauchy stress tensor and e for the elastic strain and curvature tensors,

are dropped.

D.1 Kelvin decomposition in classical elasticity

In the following the methodology for Kelvin decomposition of the classical elasticity

problem as outlined in the work of Desmorat and Marull [89, 265] is recalled.

The elasticity fourth rank tensorC (the corresponding Voigt matrix representation

is [C]) has eigenvalues Λ(I) and corresponding second rank symmetric eigentensors e(I)

(with eigenvectors ê(I)) solutions of the eigenproblem

C : e(I) = Λ(I)e(I), e(I) : e(J) = δIJ

[C]ê(I) = Λ(I)ê(I), ê(I) · ê(J) = δIJ (D.1)

with δIJ the Kronecker delta symbol. The couples (Λ(I), e(I) or ê(I)) are the Kelvin

modes and the eigenvalues Λ(I) are the Kelvin moduli. These moduli are at most six

(in the general anisotropic case in classical elasticity). In an isotropic case these

reduce to only two i.e. 3K and 2G where K and G are the bulk and shear moduli.

The Kelvin decomposition of the elasticity tensor C is then given as

C =
6∑
I=1

Λ(I)e(I) ⊗ e(I) ⇔ [C] =
6∑
I=1

Λ(I)ê(I) ⊗
(
ê(I)
)T

(D.2)
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There is always a family of six orthogonal eigentensors e(I) but some eigenvalues

can be repeated - making the family of eigentensors, non-unique - depending on the

material symmetry. The terms of identical moduli Λ(I) = ΛK can be conveniently

grouped as,

C =

N≤6∑
K=1

ΛKPK PK =
∑

I/Λ(I)=ΛK

e(I) ⊗ e(I) (D.3)

with N being the number of different Kelvin moduli. The projectors PK are unique

for a given elasticity tensor C and they naturally lead to the definition of Kelvin

stresses

σK = PK : σ (D.4)

For a given material symmetry, the above equation defines the Kelvin stress σK

as the projection of the Cauchy stress tensor on Kth Kelvin model in a unique and

objective manner. If the same projection is made for the elastic strain, i.e. εK =

PK : ε, the elasticity law σ = C : ε is equivalent to

σK = ΛKPK ∀K (D.5)

D.2 Kelvin decomposition in couple stress theory

In the following, a Kelvin type decomposition is introduced for the 4th order elasticity

tensor A that enters in the elastic law relating couple stresses to elastic curvatures.

Recall that the elastic constitutive law in the couple stress theory relates the

generally asymmetric and deviatoric couple stresses and elastic curvatures. There-

fore, the equivalent Kelvin and Voigt vector and tensor representations will have 9

components, in lieu of 6 for the classical elasticity case.

The elasticity fourth rank tensorA (the corresponding Voigt matrix representation

is [A]) has eigenvalues Φ(I) and corresponding second rank symmetric eigentensors e(I)

(with eigenvectors ê(I)) solutions of the eigenproblem

A : e(I) = Φ(I)e(I), e(I) : e(J) = δIJ
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[A]ê(I) = Φ(I)ê(I), ê(I) · ê(J) = δIJ (D.6)

The eigenvalues Φ(I) can at most attain nine different values. The extended Kelvin

decomposition of the elasticity tensor A is then given as

A =
9∑
I=1

Φ(I)e(I) ⊗ e(I) ⇔ [A] =
9∑
I=1

Φ(I)ê(I) ⊗
(
ê(I)
)T

(D.7)

It can be deduced that while a family of nine orthogonal eigentensors e(I) is always

existing, some of the eigenvalues can be repeated - making the family of eigentensors,

non-unique - depending on the material symmetry. The terms of identical moduli

Φ(I) = ΦK can be conveniently grouped as,

A =

N≤9∑
K=1

ΦKPK QK =
∑

I/Φ(I)=ΦK

e(I) ⊗ e(I) (D.8)

The projectors QK are unique for a given elasticity tensor A and they naturally

lead to the definition of Kelvin couple stresses,

MK = QK : M (D.9)

For a given material symmetry, the above equation defines the Kelvin couple stress

MK as the projection of the couple stress tensor on the Kth Kelvin mode in a unique

and objective manner. If the same projection is made for the elastic curvature, i.e.

κK = QK : ε, the elasticity law M = A : κ is equivalent to

MK = ΦKQK ∀K (D.10)

D.3 Kelvin decomposition for cubic symmetry

In the following, the eigenvectors and tensors related to Cauchy stresses and elastic

strains are developed in the case of cubic symmetry. On the other hand, due to

limited knowledge on the symmetries of the elasticity tensor A, the eigenvectors and

tensors related to the couple stresses and elastic curvatures are developed in the case

of isotropic symmetry.
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Cubic material symmetry, encountered for instance in FCC single and poly crys-

tals, allows for an easy Kelvin decomposition of the elasticity tensor and ends up to

simple Kelvin stresses. If the Cauchy stresses and elastic strains are rewritten in the

Voigt notation as

σ̂ =
(
σxx, σyy, σzz,

√
2σyz,

√
2σzx,

√
2σxy

)T
ε̂ =

(
εxx, εyy, εzz,

√
2εyz,

√
2εzx,

√
2εxy

)T
(D.11)

the elasticity law σ = C : ε takes the canonical form (in the natural anisotropy

basis),

σ̂ = [C]ε̂ [C]−1 =



1
E
− ν
E
− ν
E

0 0 0

− ν
E

1
E
− ν
E

0 0 0

− ν
E
− ν
E

1
E

0 0 0

0 0 0 1
2G

0 0

0 0 0 0 1
2G

0

0 0 0 0 0 1
2G


(~b1,~b2,~b3)

(D.12)

with E the Young’s modulus. There are N = 3 Kelvin moduli,

ΛK=1 = Λ(1) = 3K =
E

1− 2ν
,

ΛK=2 = Λ(2) = Λ(3) =
E

1 + ν
,

ΛK=3 = Λ(4) = Λ(5) = Λ(6) = 2G (D.13)

The 6 corresponding eigentensors in the basis (~b1,~b2,~b3)

e(1) =
1√
3
I, e(2) =

~b1 ⊗~b1 −~b2 ⊗~b2√
2

, e(3) =
~b1 ⊗~b1 +~b2 ⊗~b2 − 2~b3 ⊗~b3√

6

e(4) =
~b2 ⊗~b3 +~b3 ⊗~b2√

2
I, e(5) =

~b3 ⊗~b1 +~b1 ⊗~b3√
2

, e(6) =
~b1 ⊗~b2 +~b2 ⊗~b1√

2
(D.14)

These can be represented in tensorial forms using six basis B tensors. In the

following these tensors are renamed such that the first 5 tensors upon performing an
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inner product with the Cauchy stress tensor, extract its deviatoric component and

the sixth one extracts it hydrostatic component as,

B(1) =
1√
2


−1 0 0

0 1 0

0 0 0

 ;B(2) =
1√
6


−1 0 0

0 −1 0

0 0 2

 ;B(3) =
1√
2


0 0 0

0 0 1

0 1 0

 ;

B(4) =
1√
2


0 0 1

0 0 0

1 0 0

 ;B(5) =
1√
2


0 1 0

1 0 0

0 0 0

 ;B(6) =
1√
3


1 0 0

0 1 0

0 0 1

 ; (D.15)

The projectors can be defined as

PK=1 = e(1) ⊗ e(1)

PK=2 = e(2) ⊗ e(2) + e(3) ⊗ e(3)

PK=3 = e(4) ⊗ e(4) + e(5) ⊗ e(5) + e(6) ⊗ e(6) (D.16)

The Kelvin stresses σK = PK : σ are then obtained as:

1) σK=1 = σH is the hydrostatic stress 1
3
tr(σ)I associated to the Kelvin modulus

3K

2) σK=2 = σd is the diagonal part of the deviatoric stress in natural anisotropy

basis and is associated to the Kelvin modulus E
(1+ν)

3) σK=3 = σd̄ is the off-diagonal deviatoric tensor in this same basis and is

associated to the Kelvin modulus 2G

The two deviatoric tensors are then naturally obtained from the Kelvin analysis

as

σD = σd + σd̄ and σ = σD + σH (D.17)

It can be noted that Kelvin decomposition applied to isotropic materials exhibits

two modes that are the classical hydrostatic and deviatoric parts of the stress tensor.
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The couple stresses and elastic curvatures can be treated in a similar fashion as

the Cauchy stresses and elastic strains. If the couple stresses and elastic curvatures

are written in the Voigt notation, then they would be as follows:

M̂ = (Mxx,Myy,Mzz,Myz,Mxz,Mxy,Mzy,Mzx,Myx)
T

κ̂ = (κxx, κyy, κzz, κyz, κxz, κxy, κzy, κzx, κyx)
T (D.18)

the elasticity law M = A : κ takes the form (in the natural anisotropy basis),

M̂ = [A]κ̂ [A]−1 =



A1 0 0 0 0 0 0 0 0

0 A1 0 0 0 0 0 0 0

0 0 A1 0 0 0 0 0 0

0 0 0 A1 0 0 0 0 0

0 0 0 0 A1 0 0 0 0

0 0 0 0 0 A1 0 0 0

0 0 0 0 0 0 A1 0 0

0 0 0 0 0 0 0 A1 0

0 0 0 0 0 0 0 0 A1


(~b1,~b2,~b3)

(D.19)

here A2 is assumed to be zero in the isotropic case. Also note that both couple

stress and elastic curvature in the constitutive relationship are deviatoric in nature,

therefore the above form of the tensor automatically deals with these. There is only

one non-zero Kelvin moduli,

ΦK=1 = Φ(1) = Φ(2) = Φ(3) = Φ(4) = Φ(5) = Φ(6) = Φ(7) = Φ(8) = Φ(9) = A1 (D.20)

The 9 corresponding eigentensors in the basis (~b1,~b2,~b3) are

e(1) =
1√
3
I, e(2) =

~b1 ⊗~b1 −~b2 ⊗~b2√
2

, e(3) =
~b1 ⊗~b1 +~b2 ⊗~b2 − 2~b3 ⊗~b3√

6

e(4) = ~b2 ⊗~b3, e(5) = ~b1 ⊗~b3, e(6) = ~b1 ⊗~b2,

e(7) = ~b3 ⊗~b2, e(8) = ~b3 ⊗~b1, e(9) = ~b2 ⊗~b1 (D.21)
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These can be represented in tensorial forms using nine basis B2 tensors. In the

following these tensors are renamed such that the first 8 tensors upon performing an

inner product with the couple stress tensor, extract its deviatoric component and the

ninth one extracts it hydrostatic component (which is zero) as,

B
(1)
2 =

1√
2


−1 0 0

0 1 0

0 0 0

 ;B
(2)
2 =

1√
6


−1 0 0

0 −1 0

0 0 2

 ;B
(3)
2 =


0 0 0

0 0 1

0 0 0

 ;

B
(4)
2 =


0 0 1

0 0 0

0 0 0

 ;B
(5)
2 =


0 1 0

0 0 0

0 0 0

 ;B
(6)
2 =


0 0 0

0 0 0

0 1 0

 ;

B
(7)
2 =


0 0 0

0 0 0

1 0 0

 ;B
(8)
2 =


0 0 0

1 0 0

0 0 0

 ;B
(9)
2 =

1√
3


1 0 0

0 1 0

0 0 1

 (D.22)

The projectors can be defined as

QK=1 = e(1) ⊗ e(1)

QK=2 = e(2) ⊗ e(2) + e(3) ⊗ e(3)

QK=3 = e(4) ⊗ e(4) + e(5) ⊗ e(5) + e(6) ⊗ e(6)

+ e(7) ⊗ e(7) + e(8) ⊗ e(8) + e(9) ⊗ e(9) (D.23)

The Kelvin stresses MK = QK : M are then obtained as:

1) MK=1 = MH is the hydrostatic component of the deviatoric couple stress and

is therefore equal to zero.

2) MK=2 = M d is the diagonal part of the deviatoric couple stress in natural

anisotropy basis and is associated to the Kelvin modulus A1.

3) MK=3 = M d̄ is the off-diagonal deviatoric couple stress in this same basis and

is also associated to the Kelvin modulus A1.
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The two deviatoric tensors are then naturally obtained from the Kelvin analysis

as

M = MD = M d +M d̄ (D.24)
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APPENDIX E

STATIC FDDM FFT IN HETEROGENEOUS ELASTICITY

E.0.1 A Fourier transform based approach

In the following, a Fourier transform based methodology is developed to solve the

static field disclination and dislocation mechanics problem presented in section 3.2.1.

The main idea is to separate the compatible and incompatible contributions from

elastic strains and curvatures by performing operations in the Fourier space. This

method derives motivation from the Fourier transform based static field dislocation

mechanics method for homogeneous elasticity proposed in the work of Brenner et al.

[50], and extends it to disclinations in heterogeneous elasticity.

Consider a heterogeneous periodic medium defined using a discrete Fourier grid

of equi-distant Fourier points. Each of these points are allowed to have their own

elastic properties. Let the medium contain an arbitrary distribution of continuously

distributed dislocations and disclinations which are defined using their respective

defect densities in such a manner that each zone of incompatibility is associated with

an individual defect. This highlights that the present framework is developed at the

fine scale. The compatible and incompatible elastic strain and curvature induced in

the presence of these defects, along with externally imposed conditions, results in the

generation of Cauchy and couple stresses in the medium. In order to represent these

stresses, the isotropic elastic laws developed in section 3.1.4.4 are recalled,

σsij = Cijkl

(
ε
e‖
kl + εe⊥kl

)
+Bijklκ

e⊥Ds
kl (E.1)

MD
ij = Dijklε

e⊥D
kl + Aijkl

(
κ
e‖D
kl + κe⊥Dkl

)
(E.2)

Let A◦, B◦, C◦ and D◦ be the elasticity tensors for a reference medium and δA,
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δB, δC and δD be their local variations then,

σs = (C◦ + δC) :
(
εe‖ + εe⊥

)
+ (B◦ + δB) : κe⊥Ds (E.3)

MD = (A◦ + δA) :
(
κe‖ + κe⊥

)
+ (D◦ + δD) : εe⊥D (E.4)

Then the Cauchy and couple stress polarization tensors, τ and µ respectively, can

be defined as,

τ = δC :
(
εe‖ + εe⊥

)
+ δB : κe⊥Ds (E.5)

µ = δA :
(
κe‖ + κe⊥

)
+ δD : εe⊥D (E.6)

Replacing the local variations in elasticity tensors with the reference elasticity

tensors gives,

τ = −C◦ : εe‖ + C◦ : εp⊥ +B◦ : κp⊥Ds + σs (E.7)

µ = −A◦ : κe‖ + A◦ : κp⊥ +D◦ : εp⊥D +MD (E.8)

Recall the Stokes-Helmholtz decomposition of elastic strains and curvatures,

εe = εe‖ + εe⊥ = (∇ũ)sym + εe⊥ (E.9)

κe = κe‖ + κe⊥ = (∇ω̃)sym + κe⊥ (E.10)

where ∇ũ and ∇ω̃ are arbitrary elastic displacement and rotation vector belonging

to the null space of the curl operator. Without the loss of generality it can be

assumed that the elastic rotation vector is a function of the elastic displacement as

ω̃i = 1
2
eijkũl,k. The polarization tensors in equations (E.5) and (E.6) can then be

rewritten as,

τij = −C◦ijklũk,l + C◦ijklε
p⊥
kl +B◦ijklκ

p⊥Ds
kl + σsij (E.11)

µij = −1

2
A◦ijklekmnũn,ml + A◦ijklκ

p⊥
kl +D◦ijklε

p⊥D
kl +MD

ij (E.12)

Substituting the above equations into the equilibrium equation (3.14) gives,

σsij,j +
1

2
eicaM

D
ab,bc =

[
C◦ijklũk,lj +

1

2
eicaA

◦
abmnempkũk,pnbc

]
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+

−C◦ijklεp⊥kl,j −B◦ijklκp⊥kl,j − 1

2
eicaA

◦
abmnκ

p⊥
mn,bc

−1

2
eicaD

◦
abmnε

p⊥
mn,bc +

1

2
eicaµab,bc + τij,j

 = 0 (E.13)

Defining F ◦icbnpk = 1
2
eicaA

◦
abmnempk and f̂i as a fictive body force representing the

remainder of equation (E.13).

σsij,j +
1

2
eicaM

D
ab,bc = C◦ijklũk,lj + F ◦icbnpkũk,pnbc + fi = 0 (E.14)

This can be transformed into a Navier type equation using periodic Green’s func-

tion as follows,

C◦ijklG̃kr,lj (x− x′) + F ◦icbnpkG̃kr,pnbc (x− x′) + δirδ (x− x′) = 0 (E.15)

Taking its Fourier transform gives,

[
(i)2ξjξlC

◦
ijkl + (i)4ξcξbξnξpF

◦
icbnpk

] ˆ̃Gkr

(
~k
)

= −δir (E.16)

Rearranging the terms gives the expression for the periodic Green’s function in

the Fourier space as

ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl − ξcξbξnξpF ◦icbnpk

]−1
(E.17)

Focusing on the fictive body force,

f̂i

(
~k
)

=


− (iξj)C

◦
ijklε̂

p⊥
kl

(
~k
)
− (iξj)B

◦
ijklκ̂

p⊥
kl

(
~k
)

+
1

2
ξbξceicaA

◦
abmnκ̂

p⊥
mn

(
~k
)

+
1

2
ξbξceicaD

◦
abmnε̂

p⊥
mn

(
~k
)

−1

2
ξbξceicaµ̂ab

(
~k
)

+ (iξj) τ̂ij

(
~k
)

 (E.18)

recall from equation (2.92) that θ = curl κp⊥. Taking curl on both sides of this

equation gives,

curl θ = −curl
(
curl κp⊥

)
= −grad

(
div κp⊥

)
+∇2κp⊥ (E.19)
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As a consequence of the Stokes-Helmholtz decomposition, κp⊥ belongs to the curl

space. Therefore its divergence is equal to zero which gives curl θ = ∇2κp⊥ or, in

component form, ejklθil,k = κp⊥ij,mm. Taking its Fourier transform and rearranging

terms gives,

κ̂p⊥ij

(
~k
)

= −
iξkejklθ̂il

(
~k
)

∥∥∥~k∥∥∥2 (E.20)

where ~k is a vector in Fourier space with ξk being its equivalent component form.

For a given disclination density, the incompatible component of the plastic curvature

can be obtained in Fourier space using the above equation.

In a similar manner, an expression can be derived for the incompatible plastic

strain as a function of dislocation density in Fourier space. Recall from equation

(2.99) that −ejklεp⊥il,k − κ
p(‖+⊥)
kk δij + κ

p(‖+⊥)
ji = αij. Transferring the terms containing

plastic curvature on the other side of the expression, taking the curl of the equation

and then the Fourier transform gives,

ε̂p⊥ij

(
~k
)

= −
iξkejkl

(
α̂il

(
~k
)
− κ̂p⊥li

(
~k
)

+ κ̂
p(‖+⊥)
mm

(
~k
)
δil

)
∥∥∥~k∥∥∥2 (E.21)

Note that the curl of the compatible component of plastic curvature is equal to zero.

Therefore only the incompatible component is shown in the second term within the

rounded brackets in the numerator. This does not apply to the third term involving

the trace (an invariant) of the plastic curvature; both compatible and incompatible

components have a contribution. In this case, the curl is taken over the Kronecker

delta function which introduces the partial derivative of the latter i.e. δij,k. It can be

shown that δij,k is equal to zero. Recall the definition of the Kronecker delta functions

in terms of the Heaviside function as

δij = H (xi − xj)−H (xj − xi)− 1 (E.22)
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where

H
(
~x− ~x′

)
=


0, ~x < ~x′

1, ~x ≥ ~x′

 (E.23)

Recalling the definition of the Dirac delta function δ(~x) = −δ(−~x), the partial

derivative of the Kronecker delta is,

δij,k = δ (xi − xj) δik − δ (xi − xj) δjk − δ (xj − xi) δjk + δ (xj − xi) δik

= δ (xi − xj) δik − δ (xi − xj) δjk + δ (xi − xj) δjk − δ (xi − xj) δik

= 0 (E.24)

Therefore, equation (E.21) can be reduced to

ε̂p⊥ij

(
~k
)

= −
iξkejkl

(
α̂il

(
~k
)
− κ̂p(‖+⊥)

li

(
~k
))

∥∥∥~k∥∥∥2 (E.25)

Finally, the equations (E.20) and (E.25) for incompatible plastic strain and cur-

vature can be substituted in equation (E.18) for the fictive body force to obtain the

following compatible elastic displacements, strains and curvatures as,

ũ
‖
i = FT−1

(
ˆ̃Gij

(
~k
)

ˆ̃f j

(
~k
))

(E.26)

ε
e‖
ij = FT−1

(
i
(
ξj

ˆ̃Gik

(
~k
))

sym

ˆ̃fk

(
~k
))

(E.27)

κ
e‖
ij =

1

2
eiklFT

−1
(
−ξjξk ˆ̃Glm

(
~k
)

ˆ̃fm

(
~k
))

(E.28)

These expressions are the periodic solutions to the fluctuations in compatible

fields. These need to augmented with the mean compatible fields which can be derived

from the boundary conditions.

These expressions, which are dependent on the expressions of the Green’s function

and the fictive body force, can attain different forms depending on the type of incom-

patibility in the material, and heterogeneous or homogeneous elasticity. To that end,

table 8 proposes the expressions for the Green’s function and fictive body force that
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can be deduced from equations (E.17) and (E.18) based on type of incompatibility

and heterogeneous or homogeneous elasticity.

Table 8: Green’s function and fictive body force

INCOMPA-

TIBILITY

ELASTICITY GREEN’S FUNCTION & FICTIVE

BODY FORCE

NO Heterogeneous ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl

]−1

f̂i

(
~k
)

=
[
(iξj) τ̂ij

(
~k
)]

Dislocations Homogeneous ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl

]−1

f̂i

(
~k
)

=
[
− (iξj)C

◦
ijklÛ

p⊥
kl

(
~k
)]

Dislocations Heterogeneous ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl

]−1

f̂i

(
~k
)

=
[
− (iξj)C

◦
ijklÛ

p⊥
kl

(
~k
)

+ (iξj) τ̂ij

(
~k
)]

ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl − ξcξbξnξpF ◦icbnpk

]−1

Dislocations &

Disclinations

Homogeneous f̂i

(
~k
)

=



− (iξj)C
◦
ijklε̂

p⊥
kl

(
~k
)

− (iξj)B
◦
ijklκ̂

p⊥
kl

(
~k
)

+
1

2
ξbξceicaA

◦
abmnκ̂

p⊥
mn

(
~k
)

+
1

2
ξbξceicaD

◦
abmnε̂

p⊥
mn

(
~k
)


ˆ̃Gki

(
~k
)

=
[
ξjξlC

◦
ijkl − ξcξbξnξpF ◦icbnpk

]−1

Dislocations &

Disclinations

Heterogeneous f̂i

(
~k
)

=



− (iξj)C
◦
ijklε̂

p⊥
kl

(
~k
)

− (iξj)B
◦
ijklκ̂

p⊥
kl

(
~k
)

+
1

2
ξbξceicaA

◦
abmnκ̂

p⊥
mn

(
~k
)

+
1

2
ξbξceicaD

◦
abmnε̂

p⊥
mn

(
~k
)

−1

2
ξbξceicaµ̂ab

(
~k
)

+ (iξj) τ̂ij

(
~k
)


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E.1 Iterative procedure

In this section, an algorithm to solve the static FDDM FFT problem of finding

compatible elastic strain and curvature fields and corresponding Cauchy and couple

stresses for prescribed polar densities of disclinations and dislocations.

The algorithm begins by computing the incompatible plastic curvature κp⊥ij from

the prescribed disclination density θij using equation (E.20). The dislocation density

is also prescribed and along with the incompatible plastic curvature it provides the

incompatible plastic strain field through equation (E.25).

In the homogeneous elasticity case where A◦ = A, B◦ = B, C◦ = C and

D◦ = D, these field quantities are sufficient to obtain the values for compatible elastic

displacement, strain and curvature through equations (E.26) – (E.28). Cauchy and

couple stresses can then be directly obtained using equations (E.1) and (E.2).

In the case of heterogeneous elasticity, the compatible elastic displacements, strains,

and curvatures are dependent on the Cauchy and couple stress polarization tensors

and vice versa. In this case, an iterative procedure needs to be adopted to solve the

problem. Let the compatible elastic displacement, strain and curvature be initialized

to zero at iteration I = 0, i.e. ũI=0
i = 0, εe,I=0

ij = 0 and κe,I=0
ij = 0. If λI and φI

represent the Cauchy and couple stress guesses at iteration I, then at step I = 0

these can be estimated as:

λ
(I=0)
ij = Cijklε

e⊥
kl +Bijklκ

e⊥Ds
kl = −Cijklεp⊥kl −Bijklκ

p⊥Ds
kl (E.29)

φ
D(I=0)
ij = Dijklε

e⊥D
kl + Aijklκ

e⊥D
kl = −Dijklε

p⊥D
kl − Aijklκp⊥Dkl (E.30)

Then for an iteration step I, the polarization tensor can be defined as

τ
(I)
ij = −C◦ijklũ

(I−1)
k,l + C◦ijklε

p⊥
kl +B◦ijklκ

p⊥Ds
kl + λ

(I−1)
ij (E.31)

φ
(I)
ij = −1

2
A◦ijklekmnũ

(I−1)
n,ml +D◦ijklε

p⊥D
kl + A◦ijklκ

p⊥D
kl + µ

(I−1)
ij (E.32)
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The Green’s function can either be computed beforehand or during the iterative

procedure using equation (E.17). The fictive body force at step I is computed as:

f̂
(I)
i

(
~k
)

=


− (iξj)C

◦
ijklε̂

p⊥
kl

(
~k
)
− (iξj)B

◦
ijklκ̂

p⊥
kl

(
~k
)

+
1

2
ξbξceicaA

◦
abmnκ̂

p⊥
mn

(
~k
)

+
1

2
ξbξceicaD

◦
abmnε̂

p⊥
mn

(
~k
)

−1

2
ξbξceicaµ̂ab

(
~k
)

+ (iξj) τ̂ij

(
~k
)

 (E.33)

The I iteration estimates for compatible elastic strain e
e‖(I)
ij and curvature k

e‖(I)
ij

fields can be obtained as

e
e‖(I)
ij = FT−1

(
i
(
ξj

ˆ̃Gik

(
~k
))

sym

ˆ̃f
(I)

k

(
~k
))

(E.34)

k̃
e‖(I)
ij =

1

2
eiklFT

−1

(
−ξjξk ˆ̃Glm

(
~k
)

ˆ̃f
(I)

m

(
~k
))

(E.35)

Then the I th guesses for Cauchy and couple stresses can be obtained by

λ
(I=0)
ij = Cijkl(ε

e‖
kl − ε

p⊥
kl ) +Bijkl(κ

e‖Ds
kl − κp⊥Dskl ) (E.36)

φ
D(I=0)
ij = Dijkl(ε

e‖D
kl − ε

p⊥
kl D) + Aijkl(κ

e‖D
kl − κ

p⊥D
kl ) (E.37)

The algorithm then repeats itself from equation (E.31) until convergence is achieved.

An accelerated procedure, such as the augmented Lagrangian scheme, can be used to

achieve faster convergence.
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APPENDIX F

DISCRETE FOURIER TRANSFORMS

In this section, a 3-dimensional discrete Fourier transform (DFT) based framework

is proposed as a solution to overcome the Gibbs phenomenon associated in taking

continuous Fourier transforms of discontinuous fields. The method is motivated from

a recent work by Berbenni et al. [34] on a 2-dimensional DFT approach introduced to

solve Poisson and Navier type equations associated with incompatibilities introduced

in presence of dislocations and G-disclinations. The microstrcture is discretized into

a regular grid of N1×N2×N3 voxels with equal spacing in all three dimensions with

periodic boundary conditions along all the surfaces. The position vectors is defined as

~x = ((l − 1) δ1, (m− 1) δ2, (n− 1) δ3), where l = 1 → N1,m = 1 → N2, n = 1 → N3

and δ1, δ2 and δ3 are the voxel sizes in directions 1, 2 and 3 respectively. The total

number of voxels are Ntot = N1N2N3.

In the following the derivations are with respect to the ”fourn” subroutine in

FORTRAN obtained from the open source ”Numerical Recipes 77” book. In the

convention adopted by the book, the discrete Fourier transform is defined as:

f̂ (ξ1, ξ2, ξ3) =

N1∑
l=1

N2∑
m=1

N3∑
n=1

f (i, j, k) e2πi(l−1)(ξ1−1)/N1e2πi(m−1)(ξ2−1)/N2e2πi(n−1)(ξ3−1)/N3(F.1)

and

f (l,m, n) =

N1∑
l=1

N2∑
m=1

N3∑
n=1

f̂ (ξ1, ξ2, ξ3) e−2πi(l−1)(ξ1−1)/N1e−2πi(m−1)(ξ2−1)/N2e−2πi(n−1)(ξ3−1)/N3

Ntot

(F.2)

where i =
√
−1. ξ1, ξ2 and ξ3 are the frequencies corresponding to l, m and n,

respectively.

In the following the shift theorem for Fourier transforms will be utilized to compute

the partial derivatives of functions approximated using the centered difference scheme.
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With the Fourier transform convention adopted here, the shift theorem is defined as:

FT (f(l + P,m+Q, n+R)) = e−2πiPξ1/N1e−2πiQξ2/N2e−2πiRξ3/N3FT (f(l,m, n)) (F.3)

where FT represents the Fourier transform operator and P , Q, R are some integers.

Also, the partial derivative in the adopted convention is given as:

FT

(
∂3f(l,m, n)

∂x1∂x2∂x3

)
= (−ik1)(−ik2)(−ik3)FT (f(l,m, n)) (F.4)

where k1 = 2πξ1, k2 = 2πξ2 and k3 = 2πξ3 are the angular frequencies.

F.1 Differentiation rules

Let ∂a+b+cf(l,m, n)/∂xa1∂x
b
2∂x

c
3 correspond to the ath, bth and cth partial derivative

of a funtion f(l,m, n) with respect to x1, x2 and x3, respectively. In the present work,

only the partial dervatives corresponding to a+ b+ c = 1, 2, 3 and 4 are considered.

The first to fourth order partial derivates are computed on the discrete grid based

on the 27-voxel finite difference approximation of partial derivatives using centered

differences. The accuracy achieved is of the order O(δ2
1, δ

2
2, δ

2
3).

F.1.1 First order partial derivatives

The first order partial derivatives are approximated as

∂f(l,m, n)

∂x1

=
f(l + 1,m, n)− f(l − 1,m, n)

2δ1

∂f(l,m, n)

∂x2

=
f(l,m+ 1, n)− f(l,m− 1, n)

2δ2

(F.5)

∂f(l,m, n)

∂x3

=
f(l,m, n+ 1)− f(l,m, n− 1)

2δ3

The continuous Fourier transforms of the above equations are −ik1, −ik2 and

−ik3. The equivalent discrete Fourier transforms are given as

−ik1 ↔
e−2πi(ξ1−1)/N1 − e2πi(ξ1−1)/N1

2δ1

= − i

δ1

sin

(
2π(ξ1 − 1)

N1

)
−ik2 ↔

e−2πi(ξ2−1)/N2 − e2πi(ξ2−1)/N2

2δ2

= − i

δ2

sin

(
2π(ξ2 − 1)

N2

)
−ik3 ↔

e−2πi(ξ3−1)/N3 − e2πi(ξ3−1)/N3

2δ3

= − i

δ3

sin

(
2π(ξ3 − 1)

N3

)
(F.6)
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F.1.2 Second order partial derivatives

The second order partial derivatives are approximated as

∂2f(l,m, n)

∂x2
1

=
f(l + 1,m, n)− 2f(l,m, n) + f(l − 1,m, n)

δ2
1

∂2f(l,m, n)

∂x2
2

=
f(l,m+ 1, n)− 2f(l,m, n) + f(l,m− 1, n)

δ2
2

∂2f(l,m, n)

∂x2
3

=
f(l,m, n+ 1)− 2f(l,m, n) + f(l,m, n− 1)

δ2
3

∂2f(l,m, n)

∂x1∂x2

=

 f(l + 1,m+ 1, n)− f(l + 1,m− 1, n)

−f(l − 1,m+ 1, n) + f(l − 1,m− 1, n)


4δ1δ2

∂2f(l,m, n)

∂x1∂x3

=

 f(l + 1,m, n+ 1)− f(l + 1,m, n− 1)

−f(l − 1,m, n+ 1) + f(l − 1,m, n− 1)


4δ1δ3

∂2f(l,m, n)

∂x2∂x3

=

 f(l,m+ 1, n+ 1)− f(l,m+ 1, n− 1)

−f(l,m− 1, n+ 1) + f(l,m− 1, n− 1)


4δ2δ3

The continuous Fourier transform and the corresponding discrete Fourier trans-

form are:

−k2
1 ↔

2

δ2
1

(
1− cos

(
2π(ξ1 − 1)

N1

))
−k2

2 ↔
2

δ2
2

(
1− cos

(
2π(ξ2 − 1)

N2

))
−k2

3 ↔
2

δ2
3

(
1− cos

(
2π(ξ3 − 1)

N3

))
−k1k2 ↔ −

1

δ1δ2

sin

(
2π(ξ1 − 1)

N1

)
sin

(
2π(ξ2 − 1)

N2

)
−k1k3 ↔ −

1

δ1δ3

sin

(
2π(ξ1 − 1)

N1

)
sin

(
2π(ξ3 − 1)

N3

)
−k2k3 ↔ −

1

δ2δ3

sin

(
2π(ξ2 − 1)

N2

)
sin

(
2π(ξ3 − 1)

N3

)
(F.7)
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F.1.3 Third order partial dervatives

Let Dpqr represent the third order partial derivatives with respect to ∂xp, ∂xq, ∂xr

where p, q and r can all attain values 1, 2 and 3. There are 27 third order partial

derivatives of a function possible in the 3-dimensional space. By virtue of Clairaut’s

theorem where the order of the partial derivatives can be exchanged, the following

dependencies can be derived for Dpqr:

D111

D112 = D121 = D211

D113 = D131 = D311

D122 = D212 = D221

D123 = D132 = D213 = D231 = D312 = D321

D133 = D313 = D331

D222

D223 = D232 = D322

D233 = D232 = D332

D333 (F.8)

The above partial derivatives can be grouped together with respect to the types

of indices as follows:

(1)D111, D222, D333

(2)D112, D113, D122, D133, D223, D233

(3)D123 (F.9)

Only the first three derivatives (D111, D112 and D123) of the above types will be

computed in the following, the remaining can be obtained by cycling through the
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indices. The third order partial derivatives are given as follows:

D111 =
∂3f(l,m, n)

∂x3
1

=

 f(l + 2,m, n)− 2f(l + 1,m, n)

−2f(l − 1,m, n) + f(l − 2,m, n)


2δ3

1

D112 =
∂3f(l,m, n)

∂x2
1∂x2

=

 f(l + 1,m+ 1, n)− f(l + 1,m− 1, n)− 2f(l,m+ 1, n)

+2f(l,m− 1, n) + f(l − 1,m+ 1, n)− f(l − 1,m− 1, n)


2δ2

1δ2

D123 =
∂3f(l,m, n)

∂x1∂x2∂x3

=



f(l + 1,m+ 1, n+ 1)− f(l + 1,m+ 1, n− 1)

−f(l + 1,m− 1, n+ 1) + f(l + 1,m− 1, n− 1)

−f(l − 1,m+ 1, n+ 1) + f(l − 1,m+ 1, n− 1)

+f(l − 1,m− 1, n+ 1)− f(l − 1,m− 1, n− 1)


8δ1δ2δ3

(F.10)

The continuous Fourier transform and the corresponding discrete Fourier trans-

form are given as:

ik3
1 ↔ i

2

δ3
1

sin

(
2π(ξ1 − 1)

N1

)(
1− cos

(
2π(ξ1 − 1)

N1

))
ik2

1k2 ↔ i
2

δ2
1δ2

sin

(
2π(ξ2 − 1)

N2

)(
1− cos

(
2π(ξ1 − 1)

N1

))
ik1k2k3 ↔

i

δ1δ2δ3

sin

(
2π(ξ1 − 1)

N1

)
sin

(
2π(ξ2 − 1)

N2

)
sin

(
2π(ξ3 − 1)

N3

)
(F.11)

F.2 Fourth order partial derivatives

LetDpqrs represent the third order partial derivatives with respect to ∂xp, ∂xq, ∂xr, ∂xs

where p, q, r and s can all attain values 1, 2 and 3. There are 81 fourth order par-

tial derivatives of a function possible in the 3-dimensional space. From Clairaut’s

theorem, the following dependencies can be derived for Dpqrs:

D1111

D1112 = D1121 = D1211 = D2111
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D1113 = D1131 = D1311 = D3111

D1122 = D1212 = D1221 = D2112 = D2121 = D2211

D1133 = D1313 = D1331 = D3113 = D3131 = D3311

D1123 = D1132 = D1213 = D1231 = D1312 = D1321 = D2113 = D2311 = D2131 = D3112

= D3121 = D3211

D1222 = D2122 = D2212 = D2221

D1223 = D1232 = D1322 = D2132 = D2213 = D2231 = D2312 = D2321 = D3122 = D3212

= D3221 = D2123

D1233 = D1323 = D1332 = D2133 = D2313 = D2331 = D3123 = D3132 = D3213 = D3231

= D3312 = D3321

D1333 = D3133 = D3313 = D3331

D2222

D2223 = D2232 = D2322 = D3222

D2233 = D2323 = D2332 = D3223 = D3232 = D3322

D2333 = D3233 = D3323 = D3332

D3333 (F.12)

The above partial derivatives can be grouped together with respect to the types

of indices as follows:

(1)D1111, D2222, D3333

(2)D1112, D1113, D1222, D1333, D2223, D2333

(3)D1122 = D1133 = D2233

(4)D1123 = D1223 = D1233 (F.13)

Only the first four derivatives (D1111, D1112, D1122 and D1123) of the above types

will be computed in the following, the remaining can be obtained by cycling through
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the indices. The fourth order partial derivatives are given as follows:

D1111 =
∂4f(l,m, n)

∂x4
1

=

 f(l + 2,m, n)− 4f(l + 1,m, n) + 6f(l,m, n)

−4f(l − 1,m, n) + f(l − 2,m, n)


δ4

1

D1112 =
∂4f(l,m, n)

∂x3
1∂x2

=



f(l + 2,m+ 1, n)− f(l + 2,m− 1, n)

−2f(l + 1,m+ 1, n) + 2f(l + 1,m− 1, n)

+2f(l − 1,m+ 1, n)− 2f(l − 1,m− 1, n)

−f(l − 2,m+ 1, n) + f(l − 2,m− 1, n)


4δ3

1δ2

D1122 =
∂4f(l,m, n)

∂x2
1∂x

2
2

=



f(l + 1,m+ 1, n)− 2f(l + 1,m, n)

+f(l + 1,m− 1, n)− 2f(l,m+ 1, n)

+4f(l,m, n)− 2f(l,m− 1, n) + f(l − 1,m+ 1, n)

−2f(l − 1,m, n) + f(l − 1,m− 1, n)


δ2

1δ
2
2

D1123 =
∂4f(l,m, n)

∂x2
1∂x2∂x3

=



f(l + 1,m+ 1, n+ 1)− f(l + 1,m+ 1, n− 1)

−f(l + 1,m− 1, n+ 1) + f(l + 1,m− 1, n− 1)

−2f(l,m+ 1, n+ 1) + 2f(l,m+ 1, n− 1)

+2f(l,m− 1, n+ 1)− 2f(l,m− 1, n− 1)

+f(i− 1, j + 1, k + 1)− f(i− 1, j + 1, k − 1)

−f(i− 1, j − 1, k + 1) + f(i− 1, j − 1, k − 1)


4δ2

1δ2δ3

(F.14)

The continuous Fourier transform and the corresponding discrete Fourier trans-

form are given as:

k4
1 ↔

4

δ4
1

(
1− cos

(
2π(ξ1 − 1)

N1

))2

k3
1k2 ↔

2

δ3
1δ2

sin

(
2π(ξ1 − 1)

N1

)
sin

(
2π(ξ2 − 1)

N2

)(
1− cos

(
2π(ξ1 − 1)

N1

))
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k2
1k

2
2 ↔

4

δ2
1δ

2
2

(
1− cos

(
2π(ξ1 − 1)

N1

))(
1− cos

(
2π(ξ2 − 1)

N2

))
k2

1k2k3 ↔
2

δ2
1δ2δ3

sin

(
2π(ξ2 − 1)

N2

)
sin

(
2π(ξ3 − 1)

N3

)(
1− cos

(
2π(ξ1 − 1)

N1

))
(F.15)

F.3 Discrete Fourier transforms of multi-ordered partial
derivatives in multi-dimensions

From the previous section, a specific pattern can be detected in the appearance of

sine and cosine terms along with the imaginary number i and the inter Fourier point

spacings δ1, δ2 and δ3. The sine terms and the imaginary number i appear at every

odd derivative in one particular direction. The cosine terms appear for every higher

order derivative after the first derivative. An additional cosine term is introduced at

every even ordered partial derivative in one particular direction. The power of the

inter Fourier point spacings corresponds to the order of the partial derivative. For

example, consider an ath (an integer greater than 0) order derivative along the x1

direction. The continuous Fourier transform and its corresponding discrete Fourier

transform can be written as:

(ik1)a

↔ 1

δa1

(
i sin

(
2π(ξ1 − 1)

N1

)) 1−(−1)a

2
(

2

[
1− cos

(
2π(ξ1 − 1)

N1

)])n
2

1+(−1)a

2
+n−1

2

(
1−(−1)a

2

)

The above expression can be extended to 3-dimensions as:

(ik1)a(ik2)b(ik3)c

↔ 1

δa1

(
i sin

(
2π(ξ1 − 1)

N1

)) 1−(−1)a

2
(

2

[
1− cos

(
2π(ξ1 − 1)

N1

)])a
2

(
1+(−1)a

2

)
+a−1

2

(
1−(−1)a

2

)

× 1

δb2

(
i sin

(
2π(ξ2 − 1)

N2

)) 1−(−1)b

2
(

2

[
1− cos

(
2π(ξ2 − 1)

N2

)]) b
2

(
1+(−1)b

2

)
+ b−1

2

(
1−(−1)b

2

)

× 1

δc3

(
i sin

(
2π(ξ3 − 1)

N3

)) 1−(−1)c

2
(

2

[
1− cos

(
2π(ξ3 − 1)

N3

)]) c
2

(
1+(−1)c

2

)
+ c−1

2

(
1−(−1)c

2

)

Finally, the above expression can be generalized in m dimensions to obtain the

discrete Fourier transform of the finite difference approximation with accuracy O(h2)
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of partial derivatives of order a+ b+ c+ · · ·+ d in j dimensions as:

(ik1)a(ik2)b(ik3)c . . . (ikj)
d

↔ 1

δa1

(
i sin

(
2π(ξ1 − 1)

N1

)) 1−(−1)a

2
(

2

[
1− cos

(
2π(ξ1 − 1)

N1

)])a
2

(
1+(−1)a

2

)
+a−1

2

(
1−(−1)a

2

)

× 1

δb2

(
i sin

(
2π(ξ2 − 1)

N2

)) 1−(−1)b

2
(

2

[
1− cos

(
2π(ξ2 − 1)

N2

)]) b
2

(
1+(−1)b

2

)
+ b−1

2

(
1−(−1)b

2

)

× 1

δc3

(
i sin

(
2π(ξ3 − 1)

N3

)) 1−(−1)c

2
(

2

[
1− cos

(
2π(ξ3 − 1)

N3

)]) c
2

(
1+(−1)c

2

)
+ c−1

2

(
1−(−1)c

2

)

. . .

× 1

δdj

(
i sin

(
2π(ξj − 1)

Nj

)) 1−(−1)d

2
(

2

[
1− cos

(
2π(ξj − 1)

Nj

)]) d
2

(
1+(−1)d

2

)
+ d−1

2

(
1−(−1)d

2

)
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APPENDIX G

PMFDDM ALGORITHM

In the following, the iterative procedure for PMFDDM FFT developed in section 5.2.2

is described in the form of a pseudocode algorithm (see algorithm 1). The notations

used in the algorithm are described in table 9.

Table 9: Legend for algorithm 1

NOTATION DESCRIPTION

E Macro strain

K Macro curvature

∆E = Ė∆t Macro strain increment

∆K = K̇∆t Macro curvature increment

t Previous time step

t+ ∆t Current time step

Ntot Total number of time steps

ε Threshold value for error

ERR Normalized error

Niter Maximum number of iterations

∆K Macro curvature increment

re, im Real and imaginary components in Fourier space

ξi Fourier space vector in component form

σerr,M err Threshold errors in Cauchy and couple stresses

A,B Normalized errors in Cauchy and couple stresses

Continued on next page
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Table 9 – Continued from previous page

NOTATION DESCRIPTION

wgt volumetric weight function

VM VM component

BCs Boundary conditions

EA Euler Angles

N1, N2, N3 Fourier points
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Algorithm 1 : PMFDDM FFT simple

Require: Files containing RVE dimensions, Boundary conditions, test and run con-
ditions, microstructural information such as Euler angles, elastic and plastic prop-
erties

Ensure: Output local and macro stresses, strains, curvatures, displacements, polar
defect densities

1: Input N1; N2; N3; ∆E; ∆K; Σ; Φ; ε; σerr; M err; EA; C◦; A◦; τ s0 ; n; M0; γ̇0; κ̇0

2: Et+∆t ← ∆E; Kt+∆t ← ∆K, u ← 0; ε ← 0; κ ← 0; εpt ← 0; κpt ← 0; ε̇pt ← 0;
κ̇pt ← 0; wgt← 1/(N1×N2×N3); . Initialization at t = 0

3: λ← C0 : E; φ← A0 : K ; . Guesses for local stresses for t = ∆t, i = 0
4: for t← ∆t, Ntot do
5: i← 1 ;
6: ERR(σ, ε, κ, M) ← 2ε ; . Initialize error criteria for while loop on i
7: while (i < Niter; ERR(λ, ε, κ, φ) > ε) do
8: for each Fourier pt. do
9: τ̂ re(k̂), τ̂ im(k̂)← FFT (τ = −C◦ : εt+∆t,i−1 +λt+∆t,i−1) ;

10: µ̂re(k̂), µ̂im(k̂)← FFT (µ = −A◦ : κt+∆t,i−1 + φt+∆t,i−1) ;
11: f̂ re(k̂)← −ξj τ̂ imij (k̂)− µ̂rejk(k̂)eiljξkξl/2 ;

12: f̂ im(k̂)← ξj τ̂
re
ij (k̂)− µ̂imjk (k̂)eiljξkξl/2 ;

13: Ĝki(k̂)←
(
C◦ijklξlξj − F ◦icbqrkξrξqξbξc

)−1
;

14: uik ← FFT−1(Ĝkl(k̂)f̂l(k̂)) ;

15: U i
ij ← FFT−1

(
iξjĜik(k̂)f̂k(k̂)

)
;

16: εiij ← Ei
ij + 1

2

(
U i
ij + U i

ji

)
;

17: κiij ← Kij + 1
2
eiklFFT

−1
(
−ξjξkĜlm(k̂)f̂m(k̂)

)
;

18: if Mixed BC prescribed then

19: Ei
ij = Ei−1

ij + C◦−1
ijkl α

kl
(

Σkl −
〈
λ

(i)
kl (x)

〉)
∆E ;

20: Ki
ij = Ki−1

ij + A◦−1
ijklβ

kl
(

Φkl −
〈
φ

(i)
kl (x)

〉)
∆K ;

21: end if
22: end for
23: ERR(λ,ε,κ,φ) ← 0; . Initialization for cumulative addition in NR loop
24: for each Fourier pt. do
25: (λi−1 ← σi−1), (φi−1 ←M i−1), (ei ← εi), (κ̃i ← κi)
26: A ← 2σerr, B ← 2M err ; . Initializing error criteria for NR loop
27: j ← 0
28: while (j < Niter2 ; A < σerr; B < M err) do
29: Evaluate ε̇p(i,j)(σi,j−1), ∂ε̇

p

∂σ
|σi,j−1

30: Evaluate κ̇p(i,j)(M i,j−1), ∂κ̇
p

∂M
|M i,j−1
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Algorithm 1 continued...

31: Rk(σ
i)← σi,j−1

k + C0
klε

i
l − λi−1

k − C0
kle

i
l ; k = 1, 6 ;

32: Rk(M
i)←M i,j−1

k + A0
klκ

i
l − µi−1

k − A0
klκ̃

i
l ; k = 7, 15 ;

33:
∂Rk

∂σl
|σi,j−1 ← δkl + C0

km
∂εm
∂σl

; k = 1, 6 ; l = 1, 6 ;

34:
∂Rk

∂σl
|σi,j−1 ← 0 ; k = 7, 15 ; l = 1, 6 ;

35:
∂Rk

∂Ml
|M i,j−1 ← 0 ; k = 1, 6 ; l = 7, 15 ;

36:
∂Rk

∂Ml
|M i,j−1 ← δkl + A0

km
∂κm
∂Ml

; k = 7, 15 ; l = 7, 15 ;

37: σi,jk ← σi,j−1
k −

[
∂Rk

∂σl
|σi,j−1

]−1

Rl(σ
i,j−1) ;

38: M i,j
k ←M i,j−1

k −
[
∂Rk

∂Ml
|M i,j−1

]−1

Rl(M
i,j−1) ;

39: A ← ||σj−σj−1||
||σj−1|| ; B ← ||Mj−Mj−1||

||Mj−1||
40: j ← j + 1
41: end while
42: λik ← λi−1

k + C0
kl(e

i
l − εil)

43: φik ← φi−1
k + A0

kl(κ̃
i
l − κil);

44: ERR(σ,ε,κ,M) ← ERR(σ,ε,κ,M) + (||σi − λi||, ||εi − ei||, ||M i − φi||,
||κi − κ̃i||) ×wgt

45: end for
46: ERR(σ,ε,κ,M) ← ERR(σ,ε,κ,M)/VM(σ,ε,κ,M);
47: i← i+ 1
48: end while
49: if t > ∆t then
50: τ s ← τ s + ∆τ
51: end if
52: Et+∆t ← Et + ∆E;Kt+∆t ← Kt + ∆E ;
53: εp(t+∆t) = εpt + ε̇p(t+∆t)∆t;
54: κp(t+∆t) = κpt + κ̇p(t+∆t)∆t;
55: Update Euler angles using ε̇p(t+∆t), κ̇p(t+∆t)

56: εe(t+∆t) ← U t+∆t − εp(t+∆t) ;
57: κe(t+∆t) ← κt+∆t − κp(t+∆t) ;
58: αt+∆t = −curlεp(t+∆t) + κpT (t+∆t) − tr(κp(t+∆t))I ;
59: θt+∆t = −curlκp(t+∆t)

60: end for
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[80] Cosserat, E. and Cosserat, F., Théorie des corps dformables. Paris: Her-
mann, 1909.

[81] Cuitiño, A. and Ortiz, M., “A material-independent method for extending
stress update algorithms from small-strain plasticity to finite plasticity with
multiplicative kinematics,” Engineering Computations, vol. 9, pp. 437 – 452,
1992.

[82] Dafalias, Y., “Plastic spin: Necessity or redundancy?,” International Journal
of Plasticity, vol. 14, pp. 909–931, 1998.

[83] Dao, M., Lu, L., Asaro, R. J., Hosson, J. T. M. D., and Ma, E., “Toward
a quantitative understanding of mechanical behavior of nanocrystalline metals,”
Acta Materialia, vol. 55, pp. 4041 – 4065, 2007.

[84] De Hosson, J. T. M., “Superlattice dislocations in l12 ordered alloys and in
alloys containing l12 ordered precipitates,” Mat. Sci. Engg., vol. 81, pp. 515 –
523, 1986.

[85] Dekeyser, W. and Amelinckx, S., Les Dislocations et la Croissance des
Crystauxs. Paris: Masson, 1955.

[86] Delhez, R., de Keijser, T. H., and Mittemeijer, E. J. Accuracy in Pow-
der diffraction, National Bureau of Science: Washington DC: National Bureau
of Science Special Publication Number 567, 1980.

[87] Delhez, R., de Keijser, T. H., Mittemeijer, E. J., and Langford,
J. I., “Size and strain parameters from peak profiles: Sense and nonsense,”
Australian Journal of Physics, vol. 41, pp. 213–227, 1988.

[88] Dellinger, L., Vasicek, D., and Sondergeld, C., “Kelvin notation for
stabilizing elastic constant inversion,” Revue de l’Institute Francaise de Petrol,
vol. 53, pp. 709 – 719, 1998.
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[221] Kröner, E., “Dislocations in crystals and in continua: A confrontation,” In-
ternational Journal of Engineering Science, vol. 33, pp. 2127–2135, 1995.

[222] Kröner, E. and Seeger, A., “Nicht-lineare elastizitatstheorie der verset-
zungen und eigenspannungen,” Archives for Rational Mechanics and Analysis,
vol. 3, pp. 97–119, 1959.
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