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Outline
• The crystal plasticity FFT approach

• FFT – a brief history until its introduction into mechanics of materials

• Elastic FFT for modeling heterogeneous materials

• Elasto-viscoplastic FFT for modeling polycrystals

• Comparison with FEM
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FFT – history
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1805

Johann Carl Friedrich Gauß
First concept of fast DFTs 

(somewhere in his notebook)

1807

1965

Popularized the Radix-2 
FFT algorithm

JB Joseph Fourier 
presents 

harmonic analysis

“Nothing” happens
1942

1958

Danielson &
Lanczos

Propose their 
approach

Good
Proposed the prime factor

algorithm

1994

Pierre
Suquet

Hervé
Moulinec

Introduced FFT
into mechanics
to study micro-
mechanics of 

elastic composites
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A representative volume element (RVE)

• We are interested in studying the deformation of a multi-phase material that is elastically 
inhomogeneous subjected to external mechanical loadings.

• If these external loadings (force or displacement) are represented in the form of homogenous 
fields i.e. mechanical stresses and strains, then the effective response of a material can be 
determined numerically by solving the “local problem” on a representative volume element (RVE) 
of the microstructure.

• An RVE is the smallest volume that is representative of the properties and response of a material
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An RVE of a composite
• RVE = smallest volume that behaves like the whole

• Deformation of an elastic composite

• Property: elastic heterogeneity

• Property: Multi-phase

• Mechanics: Forces 𝑻 and displacements 𝒖 => 
homogeneous stresses 𝚺 and strains 𝑬

• Sources for RVEs:

• Micrographs (2D/3D SEM, EBSD or 3D XRD – polycrystals)

• Synthetic (Voronoi tessellations)

• RVEs for FFT

• Structured grid => Equi-spaced pixels/voxels

• Periodic boundary conditions

https://www.manas-upadhyay.com

𝑻, 𝒖

𝚺, 𝑬 RVE
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The local problem – Linear elastic case

• Within the RVE 𝑉

• Displacements 𝒖 𝒙 and stresses 𝝈 𝒙 are piecewise continuous => perfect bonding
between material points

• Equilibrium: 𝐝𝐢𝐯 𝝈 𝒙 = 𝟎 or 𝜎𝑖𝑗,𝑗 𝒙 = 0𝑖; ∀𝒙 ∈ 𝑉

• Elastic constitutive relationship

𝝈 𝒙 =
𝜕𝑤 𝜺 𝒙

𝜕𝜺 𝒙
= 𝑪 𝒙 : 𝜺 𝒙 or 𝜎𝑖𝑗 𝒙 = 𝐶𝑖𝑗𝑘𝑙 𝒙 𝜀𝑖𝑗 𝒙 ;∀𝒙 ∈ 𝑉

𝑤 𝜺 𝒙 = elastic strain energy

Linearity => 𝑤 𝜺 𝒙 is quadratic => 𝝈 𝒙 is a linear function of 𝜺 𝒙

• On RVE surface 𝑺

• 𝒖 𝒙 and tractions 𝑻 𝒙 = 𝝈 𝒙 ⋅ 𝒏 undetermined 
=> periodic boundary conditions
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Splitting the local fields – kinematics
• The local strain field 𝜺 𝒙 is split into its R.V.E. average value 𝑬

and a fluctuation term ෤𝜺 𝒙 such that

𝜺 𝒙 = ෤𝜺 𝒙 + 𝑬

• This gives an equivalent relationship for the local displacement
𝒖 𝒙 in terms of its local fluctuation ෥𝒖 𝒙 from the R.V.E. average

𝒖 𝒙 = ෥𝒖 𝒙 + 𝑬 ⋅ 𝒙

• Periodic boundary conditions ⇒

• ෥𝒖 𝒙 is periodic on 𝑺 of the RVE; ∀𝒙 ∈ 𝑺

https://www.manas-upadhyay.com

Why?
1) Fourier transform of

a constant is zero
2) Allows using the Green’s 

function method to solve
the local problem
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Splitting the local fields – statics
• Split the microstructure

• Homogeneous effective medium (HEM) with stiffness 𝑪0

• Local perturbations in stiffness: 𝜹𝒄 𝒙 = 𝒄 𝒙 − 𝑪0

• Stress polarization

• 𝝉 𝒙 = 𝜹𝒄 𝒙 : 𝜺 𝒙 = 𝝈 𝒙 − 𝑪0: 𝜺 𝒙 = 𝒄 𝒙 − 𝑪𝟎 : ෤𝜺 𝒙 + 𝑬 ; ∀𝒙 ∈ 𝑉

• Periodic boundary conditions ⇒ 𝑻 𝒙 = 𝝈 𝑥 ⋅ 𝒏 𝒙 is anti-periodic; ∀𝒙 ∈ 𝑺

c3-C0

c1-C0 c2-C0

C0
+

HEM

Perturbation in 

elastic stiffness

A possibility, c𝑖 − 𝑪0 = 𝒄𝑖 − 𝐶0 = 0
https://www.manas-upadhyay.com
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Local problem – fluctuating fields

𝝈 𝒙 = 𝒄 𝒙 : ෤𝜺 𝒙 + 𝑬 = 𝑪𝟎: 𝜺 𝒙 + 𝝉 𝒙 ; ∀𝒙 ∈ 𝑉

𝐝𝐢𝐯 𝝈 𝒙 = 𝐝𝐢𝐯 𝑪𝟎: 𝜺 𝒙 + 𝐝𝐢𝐯 𝝉 𝒙 = 𝟎; ∀𝒙 ∈ 𝑉

෥𝒖 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 , 𝝈 ⋅ 𝒏 𝑎𝑛𝑡𝑖 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 ; ∀𝒙 ∈ 𝑺

• Equilibrium equation
𝜎𝑖𝑗,𝑗 = 𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑘𝑙,𝑗 + 𝜏𝑖𝑗,𝑗 = 0

𝐶𝑖𝑗𝑘𝑙
0 𝑢𝑘,𝑙𝑗 + 𝜏𝑖𝑗,𝑗 = 0

using continuity condition: 𝜀𝑘𝑙 =
1

2
𝑢𝑘,𝑙 + 𝑢𝑙,𝑘

https://www.manas-upadhyay.com

PDE with initial &
boundary conditions

How to solve?

+ 𝚺, 𝑬
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Green’s function approach
• Equilibrium

𝐶𝑖𝑗𝑘𝑙
0 𝑢𝑘,𝑙𝑗 + 𝜏𝑖𝑗,𝑗 = 0

• Assuming that 𝜏𝑖𝑗,𝑗 is a fictitious body force

• 𝐺𝑘𝑚 𝒙 − 𝒙′ = displacement component along 𝑥𝑘 direction at point 𝒙 due to a unit
force applied in the 𝑥𝑚 direction at the point 𝒙′

• Then,

෤𝑢𝑘 𝒙 = න

𝑉

𝐺𝑘𝑖 𝒙 − 𝒙′ 𝜏𝑖𝑗,𝑗 𝒙′ d𝒙′

• After integrating by parts, taking the derivative and symmetrizing:

ǁ𝜀𝑖𝑗 𝒙 = sym න

𝑉

𝐺𝑖𝑘,𝑗𝑙 𝒙 − 𝒙′ 𝜏𝑘𝑙 𝒙′ d𝒙′

https://www.manas-upadhyay.com
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The periodic Lippmann-Schwinger equation

• Calling Γ𝑖𝑗𝑘𝑙 = sym 𝐺𝑖𝑗,𝑘𝑙 , and noting that “∗” means a convolution integral, we get

𝜀𝑖𝑗 𝒙 = Γ𝑖𝑗𝑘𝑙 ∗ 𝜏𝑘𝑙 𝒙 + 𝐸𝑖𝑗

• Fourier transform of 𝜺 𝒙 gives

Ƹ𝜀𝑖𝑗 𝝃 = መǁ𝜀𝑖𝑗 𝝃 = ෠Γ𝑖𝑗𝑘𝑙 𝝃 Ƹ𝜏𝑘𝑙 𝝃

https://www.manas-upadhyay.com

ǁ𝜀𝑖𝑗 𝒙

Periodic Lippmann-Schwinger equation
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Modified Green’s function

https://www.manas-upadhyay.com

• Compute Γ𝑖𝑗𝑘𝑙 𝒙 in Fourier space ෠Γ𝑖𝑗𝑘𝑙 𝝃

• Recall equilibrium equation in real space: 𝐶𝑖𝑗𝑘𝑙
0 𝐺𝑘𝑚,𝑙𝑗 𝒙 − 𝒙′ + 𝛿𝑖𝑚𝛿 𝒙 − 𝒙′ = 0

• Fourier transform the equilibrium equation

⇒ 𝐶𝑖𝑗𝑘𝑙
0 𝜉𝑙𝜉𝑗 ෠𝐺𝑘𝑚 𝝃 = 𝛿𝑖𝑚

⇒ ෠𝐺𝑘𝑖 𝝃 = 𝐶𝑖𝑗𝑘𝑙
0 𝜉𝑙𝜉𝑗

−1
and

⇒ ෠Γ𝑖𝑗𝑘𝑙 𝝃 = −
1

2
𝜉𝑗𝜉𝑙 ෠𝐺𝑘𝑖 𝝃 + 𝜉𝑗𝜉𝑙 ෠𝐺𝑖𝑘 𝝃
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The periodic Lippmann-Schwinger equation in 
Fourier space

• ෠Γ𝑖𝑗𝑘𝑙 𝝃 can be calculated at any frequency except at the origin in the Fourier space i.e.
𝝃 = 𝟎 where the value of ෠෤𝜺 is already given directly by ෠෤𝜺ȁ𝝃=𝟎 = 0 i.e. the average value of
the strain fluctuations in the real space vanishes in the Fourier space.

• The derivations in the Fourier space shown so far can be used to compute the accurate
solution of the local strain field (accuracy depends on the domain discretization) if the
transformed perturbation field Ƹ𝜏𝑖𝑗 is known.

• But ො𝝉𝒊𝒋 is a priori unknown !! Solution?
Use an iterative procedure

https://www.manas-upadhyay.com
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Elastic FFT – Iterative procedure

• Prior to proceeding with the numerical procedure, we need to note that the R.V.E. under
consideration is finite sized and if it is discretised into 𝑁1 × 𝑁2 equispaced pixels in 2D or
𝑁1 × 𝑁2 × 𝑁3 equispaced voxels in 3D then the continuous Fourier transform that
appeared before can be replaced by a discrete Fourier transform which can be
computed using the Fast Fourier Transform (FFT) approach as discussed in the slides FFT:
a brief review on my website.

https://www.manas-upadhyay.com
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Elastic FFT – Fixed point algorithm (Basic Scheme)
• Initialization: 𝜺𝟎 𝒙 = 𝑬

𝝈𝟎 𝒙 = 𝒄 𝒙 : 𝜺𝟎 𝒙
• Iteration 𝑖 + 1 (𝜺𝒊 and 𝝈𝒊 are knowns)

1. ෝ𝝈𝒊 = 𝑭𝑭𝑻 𝝈𝒊

2. 𝑒𝑟𝑟 =

𝐝𝐢𝐯 𝝈𝑖
2

1
2

𝝈𝒊
=

𝝃⋅ෝ𝝈𝑖 𝝃
2

1
2

ෝ𝝈𝑖 𝟎
(if converged then stop)

3. 𝝉𝒊 = 𝝈𝒊 − 𝑪𝟎: 𝜺𝒊

4. ො𝝉𝒊 = 𝑭𝑭𝑻 𝝉𝒊

5. Calculate Γ𝑖𝑗𝑘𝑙 𝝃 ∀ 𝝃 ≠ 𝟎

6. ෠෤𝜺𝑖+1 = ෡𝚪: ො𝝉𝑖 with ෠෤𝜺𝑖+1ȁ 𝜉=ഥ0 = 0

7. ෤𝜺𝑖+1 = 𝐹𝐹𝑇−1 ෠෤𝜺𝑖+1 and 𝝈𝑖+1 = 𝒄: 𝑬 + ෤𝜺𝑖+1

8. Repeat from 1

(Note that 𝒙 ∈ 𝒙𝒅 where 𝑥𝑑 is the appropriate discretization for FFT to be applied)

https://www.manas-upadhyay.com

Slow convergence
for high contrast or
non-linear materials
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Need for an accelerated scheme
• Adapted from Michel et al. (2000, 2001)

• The rate of convergence of the FFT method varies with the contrast between the phases (for linear 
composites) and can be very slow for composites with high contrast (typically above 104) and is even 
not ensured for composites with infinite contrast (typically materials containing voids or rigid 
inclusions). New schemes have to be developed for these extreme situations. 

• Another motivation for proposing alternative schemes comes for non-linear problems. Although the 
method has been successfully applied to linear elastic and elastic–plastic composites in Moulinec and 
Suquet [2], it cannot be straightforwardly extended to all non-linear material behaviours, such as 
power-law stress-strain relations which occurs for visco-plastic materials. With such materials, the 
initial moduli (which can be the secant moduli for instance) are very large. In addition, these moduli 
are very contrasted in zones undergoing inhomogeneous deformations. Therefore, a non-linear 
composite with power-law phases behaves as a linear composite with many different and highly 
contrasted phases. This bring us back to the problem of highly contrasted phases.

• Finally, there is a theoretical interest in the non-linear properties of power-law materials containing 
voids or rigid inclusions. These materials provide good tests to assess the accuracy of non-linear 
bounds and estimates. In this case both difficulties (high contrast stemming from the non-linearity and 
infinite contrast stemming from the inclusion phase) are present.

https://www.manas-upadhyay.com
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Effective behavior – a minimization problem

• The effective behavior of the composite also results from an effective strain-energy 
𝑊ℎ𝑜𝑚, which can be characterized by the variational property (Suquet, 1987; Ponte-
Castaneda & Suquet, 1998):

𝑊ℎ𝑜𝑚 𝑬 = min
𝒖∈𝑲 𝑬

𝑤 𝜺 𝒖

where . denotes the spatial average over volume 𝑉, and 𝑲 𝑬 = ሼ
ሽ

𝒖 such that 𝜺 𝒖 =
𝑬 + 𝜺 ෥𝒖 , ෥𝒖 is periodic is the set of displacement fields that are kinematically 
admissible with the average strain 𝑬.

The above equation can be reformulated as a minimization problem
min
𝒆

min
𝒖∈𝑲 𝑬

𝑤 𝒆

Under the constraint (compatibility condition)
𝜺 𝒖 𝒙 − 𝒆 𝒙 = 𝟎 ∀𝒙 ∈ 𝑉

https://www.manas-upadhyay.com
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Accelerated scheme – Augmented Lagrangian
• The above equation is a constrained minimization problem that can be solved using the Augmented Lagrangian technique.

NOTE: The augmented Lagrangian technique is a modification of the penalty method. The latter converts a constrained minimization 
problem into an unconstrained minimization problem. For instance, if we are trying to solve

min 𝑓 𝒙

Subject to 𝑐𝑖 𝒙 ≤ 0 ∀𝑖 ∈ 𝐼

Then using the penalty method, it can be converted to the following unconstrainted problem

min𝜙𝑘 𝒙 = 𝑓 𝒙 + 𝜇𝑘 σ𝑖∈𝐼 𝑔 𝑐𝑖 𝒙 ; where 𝑔 𝑐𝑖 𝒙 = max 0, 𝑐𝑖 𝒙
2

Here 𝑔 𝑐𝑖 𝒙 is the external penalty function and 𝜇𝑘 are the penalty coefficients. At each iteration 𝑘, the penalty method solves the 
above unconstrained problem by increasing the penalty coefficient 𝜇𝑘 with respect to the previous coefficient and uses the solution as an 
initial guess for the next iteration 𝑘 + 1. Solutions of the successive unconstrained problems will eventually converge to the solution of 
the original constrained problem.

The augmented Lagrangian method, in its general form, uses the following unconstrained objective

min𝜙𝑘 𝒙 = 𝑓 𝒙 +
𝜇𝑘
2
෍

𝑖∈𝐼

𝑔 𝑐𝑖 𝒙 −෍

𝑖∈𝐼

𝜆𝑖𝑐𝑖 𝒙

After each iteration, in addition to updating 𝜇𝑘, the variable 𝜆 is also updated according to the rule

𝜆𝑖 ← 𝜆𝑖 − 𝜇𝑘𝑐𝑖 𝒙𝑘 where 𝜆 is Lagrange multiplier and 𝒙𝑘 is the solution to the unconstrainted problem at the 𝑘th step. The main 
advantage of this method is that unlike the penalty method, it is not necessary to take 𝜇 → ∞ in order to solve the original constrained 
problem. Instead because of the presence of the Lagrange multiplier , 𝜇 can stay much smaller, thus avoiding ill-conditioning.

https://www.manas-upadhyay.com
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Accelerated scheme – Augmented Lagrangian
• Coming back to our constrained minimization problem

min
𝒆

min
𝒖∈𝑲 𝑬

𝑤 𝒆

Under the constraint (compatibility condition)
𝜺 𝒖 𝒙 − 𝒆 𝒙 = 𝟎 ∀𝒙 ∈ 𝑉

• Let 𝜆(𝒙) denote the Lagrange multiplier associated with the compatibility condition 
mentioned in the previous slide. Then the “augmented Lagrangian” can be written as

𝐿𝒄0 = 𝜀 𝒖 , 𝒆, 𝜆 = 𝑤 𝒆 + 𝜆: 𝜀 𝒖 − 𝒆 +
1

2
𝜀 𝒖 − 𝒆 : 𝒄𝑜: 𝜀 𝒖 − 𝒆

𝒄0 possess the same order and symmetries that are characteristic of a stiffness tensor. It is 
chosen depending on the problem under consideration.

Our constrained problem has now turned into an unconstrained saddle point problem for 
𝐿𝒄0. The saddle point can be reached with the help of Uzawa’s algorithm (Glowinski and Le 
Tallec, 1989; Licht and Suquet, 1986).

https://www.manas-upadhyay.com
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Accelerated scheme – Augmented Lagrangian
• Uzawa’s algorithm for our constrained problem (adapted from Michel et al., 2000, 2001)

Iteration 𝑖: given 𝒆𝑖−1 and 𝜆𝑖−1

(1) compute 𝜺 𝒖𝑖 solution of the problem:
min

𝒖∈𝑲 𝑬
𝐿𝒄0 𝜺 𝒖 , 𝒆𝑖−1, 𝜆𝑖−1

(2) compute 𝒆𝑖 solution of the nonlinear equation (at each point 𝒙):
𝜕𝑤

𝜕𝒆
𝒙, 𝒆𝑖 + 𝒄0: 𝒆

𝑖 𝒙 = 𝒄0: 𝜺 𝒖𝒊 𝒙 + 𝜆𝑖−1 𝒙

(3) update 𝜆𝑖:

𝜆𝑖 𝒙 = 𝜆𝑖−1 𝒙 + 𝒅0: 𝜺 𝒖𝑖 𝒙 − 𝒆𝑖 𝒙

𝒅0 is a fourth order tensor which serves to give the descent direction in Uzawa’s algorithm. 
Once we achieve convergence, 𝒆 coincides with 𝜺 𝒖 and 𝝀 is the stress 𝜕𝑤 𝜺 𝒖 /𝜕𝜺.

In the following slides we will discuss in more detail the above algorithm.

https://www.manas-upadhyay.com
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Accelerated scheme – Augmented Lagrangian
(1) Step 1: Auxiliary problem

The minimization problem min
𝒖∈𝑲 𝑬

𝐿𝒄0 𝜺 𝒖 , 𝒆𝑖−1, 𝜆𝑖−1 is a classic elasticity problem for a 

homogeneous, linear elastic medium with stiffness moduli 𝒄0. This homogeneous material 
will be referred to here as the reference medium. Recalling the local problem associated 
with the above equation:

𝝈 𝒙 = 𝒄𝟎: 𝜺 𝒙 + 𝝉 𝒙 = 𝒄𝟎: ෤𝜺 𝒙 + 𝒄𝟎: 𝑬 + 𝝉 𝒙 ; 𝒙 ∈ 𝑉

𝐝𝐢𝐯 𝝈 𝒙 = 𝐝𝐢𝐯 𝒄𝟎: ෤𝜺 𝒙 + 𝐝𝐢𝐯 𝝉 𝒙 = 𝟎; ∀𝒙 ∈ 𝑉

෥𝒖 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 , 𝝈 ⋅ 𝒏 𝑎𝑛𝑡𝑖 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑜𝑛 𝑺

Where the periodic polarization field is
𝝉 𝒙 = 𝝀𝑖−1 𝒙 − 𝑐0: 𝒆

𝑖−1 𝒙

The solution to the local problem is obtained by the Green’s function method as seen 
earlier

• Real space: ǁ𝜀𝑖𝑗 𝒙 = Γ𝑖𝑗𝑘𝑙 ∗ 𝜏𝑘𝑙 𝒙 ; ∀𝒙 ∈ 𝑉

• Fourier space: መǁ𝜀𝑖𝑗 𝝃 = ෠Γ𝑖𝑗𝑘𝑙 𝝃 Ƹ𝜏𝑘𝑙 𝝃 ; ∀𝝃 ≠ 𝟎, ෠෤𝜺 𝟎 = 𝟎.

https://www.manas-upadhyay.com
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Accelerated scheme – Augmented Lagrangian
2) Step 2: Nonlinear equation 

The equation 
𝜕𝑤

𝜕𝒆
𝒙, 𝒆𝑖 + 𝒄0: 𝒆

𝑖 𝒙 = 𝒄0: 𝜺 𝒖𝒊 𝒙 + 𝜆𝑖−1 𝒙 is a tensorial nonlinear 

equation. When 𝑤 is convex i.e. 𝜕𝑤/𝜕𝜀 is a monotonic function, this equation admits a 
unique solution which can be reached using any classical method (Newton’s method, 
substitution method, etc.). There are some particular cases that can be interesting, one of 
which is a nonhomogeneous linear material with stiffness 𝒄 𝒙

The above equation reduces to 𝒆𝑖 = 𝜺 𝒖𝑖 + 𝒄𝟎 + 𝒄 −1 𝝀𝑖−1 − 𝒄: 𝜺 𝒖𝑖

3) Step 3: Updating the Lagrange multiplier

In the equation 𝜆𝑖 𝒙 = 𝜆𝑖−1 𝒙 + 𝒅0: 𝜺 𝒖𝑖 𝒙 − 𝒆𝑖 𝒙 , there are several possibilities 

for choosing 𝒅0. One of the simplest choices is 𝒅0 = 𝒄0 which also has some advantages. 
In the particular case of voided materials (linear or nonlinear), it can be checked that it 
leads to 𝝀𝑖 = 0 in the voids. Equilibrium is then satisfied everywhere, including the voids.
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The augmented Lagrangian FFT algorithm
An iteration of Uzawa’s algorithm shown above reads (adapted from Michel et al. 2000) :

Iteration 𝑖: given 𝒆𝑖−1 and 𝝀𝑖−1,

a) 𝝉𝑖−1 𝒙 = 𝝀𝑖−1 𝒙 − 𝒄0: 𝒆
𝑖−1 𝒙

b) ො𝝉𝑖−1 𝝃 = 𝐹𝐹𝑇 𝝉𝑖−1

c) ෠෤𝜺𝑖 𝝃 = ෠Γ 𝝃 : ො𝝉𝑖−1 𝝃 ; ∀𝝃 ≠ 𝟎, ො𝜺𝑖 𝟎 = 𝑬

d) ෤𝜺𝒊 𝒙 = 𝐹𝐹𝑇−1 Ƹ𝜀𝑖 𝝃

e) (A*) Solve 
𝜕𝑤

𝜕𝒆
𝒙, 𝒆𝑖 + 𝒄0: 𝒆

𝑖 𝒙 = 𝒄0: 𝜺 𝒖𝒊 𝒙 + 𝜆𝑖−1 𝒙 for 𝒆𝑖 𝒙

f) 𝝀𝑖 𝒙 = 𝝀𝑖−1 𝒙 + 𝒄0: 𝜺𝑖 𝒙 − 𝒆𝑖 𝒙

g) (B*) Convergence test

In the following, we will discuss A* and B*.
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A* - Newton approach for the elastic problem
We want to solve the nonlinear equation:

𝜕𝑤

𝜕𝒆
𝒙, 𝒆𝑖 + 𝒄0: 𝒆

𝑖 𝒙 = 𝒄0: 𝜺 𝒖𝒊 𝒙 + 𝝀𝑖−1 𝒙

To do this we can use the Newton approach. In this approach, the problem reduces to nullifying the 
residual

𝑹
𝜕𝑤

𝜕𝜺
𝜺𝑖 =

𝜕𝑤

𝜕𝜺
𝜺𝑖 + 𝒄0: 𝒆

𝑖 𝒙 − 𝝀𝑖−1 𝒙 − 𝒄0: 𝜺 𝒖𝒊 𝒙 = 𝟎

Let 𝑺𝑖 =
𝜕𝑤

𝜕𝜺
𝜺𝑖 then

𝑺𝑖,𝑗 = 𝑺𝑖,𝑗−1 − ቤ
𝜕𝑹

𝜕𝑺
𝑺𝑖,𝑗−1

: 𝑹 𝑺𝑖,𝑗−1

Gives the 𝑗 + 1 guess for 𝑺𝑖. The Jacobian reads

ቤ
𝜕𝑹

𝜕𝑺
𝑺𝑖,𝑗−1

= 𝑰 + 𝒄0: 𝒄
−1

Once convergence is achieved on 𝑺𝑖 then we can compute 𝝀𝑖 𝒙 in step (f) on the previous slide.
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B* - Convergence criterion
The convergence test focuses on the compatibility equations and the stress-strain relations. If we 
defined the following norm of a second order tensor

𝒂 = max
𝒙

𝒂 𝒙 :𝒂 𝒙

Then the iterative procedure is stopped when

max
𝜺𝑖 − 𝒆𝑖

𝑬
,
𝝀𝑖 −

𝜕𝑤
𝜕𝜺

𝜺𝑖

𝜕𝑤
𝜕𝜺

𝑬
≤ 𝜂

Where typically 𝜂 ≤ 10−5

At the end of the iterative loop, one gets a compatible strain field that is constitutively related to an 
equilibrated stress field.

Note that for a time dependent loading, this iterative loop has to be embedded in a time loop.
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Elasto-viscoplastic FFT – the local problem
• The algorithm was presented in the work of Lebensohn et al. (2012) in small small strain framework. 

• Part of the local problem is still written as
𝝈 𝒙 = 𝒄𝟎: 𝜺 𝒙 + 𝝉 𝒙 = 𝒄𝟎: ෤𝜺 𝒙 + 𝒄𝟎: 𝑬 + 𝝉 𝒙 ; 𝒙 ∈ 𝑉

𝐝𝐢𝐯 𝝈 𝒙 = 𝐝𝐢𝐯 𝒄𝟎: ෤𝜺 𝒙 + 𝐝𝐢𝐯 𝝉 𝒙 = 𝟎;∀𝒙 ∈ 𝑉

෥𝒖 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 , 𝝈 ⋅ 𝒏 𝑎𝑛𝑡𝑖 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑜𝑛 𝑺

• Now, in addition, we have visco-plastic deformation whose contribution can be mathematically 
accounted for via the rate-dependent power law relationship between the plastic strain rate ( ሶ𝜀𝑣𝑝), the 
shear rate per slip system 𝑠 ( ሶ𝛾𝑠) and the Cauchy stress (Hutchinson 1976, Pan & Rice 1983, Asaro & 
Needleman 1985)

ሶ𝜀𝑣𝑝 = ෍

𝑠=1

𝑁

ሶ𝛾𝑠𝑚𝑠 = ෍

𝑠=1

𝑁

ሶ𝛾0
𝑠 𝝈:𝒎𝑠

𝜏𝑠
𝑐

𝑛

sgn 𝝈:𝒎𝑠

Here, 𝝈:𝒎𝑠 is the resolved shear stress on each slip system, 𝜏𝑠
𝑐 is the critical resolved shear stress, ሶ𝛾0

𝑠 is 
the reference shear rate and 𝑛 is the power law exponent which is the inverse of the rate sensitivity 
parameter. The elastic strain is related to the total and plastic strains as 𝜺𝑒 = 𝜺 − 𝜺𝑣𝑝
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EVPFFT augemented Lagrangian algorithm

• The algorithm remains the same as the one presented for the elastic case with the only difference 
comes into the Newton-Raphson approach where the Jacobian is computed as:

ቤ
𝜕𝑹

𝜕𝝈
𝝈𝑖,𝑗−1

= 𝑰 + 𝒄0: 𝒄
−1 + Δ𝑡 𝒄0: ቤ

𝜕 ሶ𝜺𝑣𝑝

𝜕𝝈
𝝈𝑖,𝑗−1

• Note here that 𝝈 = 𝑺

• The derivative on the right is the tangent compliance of the viscoplastic relationship ሶ𝜀𝑣𝑝 =

σ𝑠=1
𝑁 ሶ𝛾𝑠𝑚𝑠 = σ𝑠=1

𝑁 ሶ𝛾0
𝑠 𝝈:𝒎𝑠

𝜏𝑠
𝑐

𝑛

sgn 𝝈:𝒎𝑠
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FFT vs FEM
Criteria FFT FEM

Computational time O (Nlog2N) O(N2)

Mesh No Yes

Spatial arrangement of material 
points

Structured grid Depends on mesh (affects 
convergence)

Boundary conditions Homogeneous stress or strain rate 
(force and displacement now 
possible via non-periodic FFTs)

Forces and displacements

Domain Periodic RVE (although efficient 
non-periodic FFTs exist)

Any shape and size

Interfaces Not well defined (has its 
advantages/disadvantages)

Well-defined (has its 
advantages/disadvantages)

Dimensions 2D/3D full field 2D/3D full field

Large deformations Computations done in reference 
configuration

Computations in reference and 
current configurations
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