
Fast Fourier transforms 
(FFTs): a brief overview

Manas Upadhyay

Assistant Professor

LMS, CNRS, Ecole Polytechnique, France

1



Discrete Fourier Transforms (DFT)

• To understand the working principle of FFTs, one must be familiar with DFTs.
• Here it is assumed that the reader is already familiar with the DFT which 

transforms a sequence of 𝑁 complex numbers 𝒙𝒏 ≔ 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑁−1 into 
another sequence of 𝑁 complex numbers 𝑿𝒌 ≔ 𝑋0, 𝑋1, … , 𝑋𝑁−1 as follows:

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑒
−𝑖
2𝜋𝑘𝑛
𝑁 , 𝑘 ∈ 0,1, … , 𝑁 − 1

• The DFT is an invertible linear transformation whose inverse is knows as the inverse 
DFT and it is computed as

𝑥𝑛 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋𝑘𝑒
𝑖
2𝜋𝑘𝑛
𝑁 , 𝑛 ∈ 0,1, … , 𝑁 − 1

2



But what are the computational 
requirements?
• Prior to that we need to answer the question, how do we evaluate 

computational complexity?
• By counting the number of real multiplications, divisions, additions and 

subtractions (equivalent to additions) are required
• Note that by real we mean either fixed-point or floading point operations depending on 

the specific hardware

• Other operations such as loading from memory, storing in memory, 
loop counting, indexing, etc. are not counted (depends on 
implementation/architecture)
• These are considered as overheads here

3



DFT as a vector operation

• Reconsider our sequence of sampled values 𝑥𝑛 and their transformed 
values 𝑋𝑘 given by

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑒
−𝑖
2𝜋𝑘𝑛
𝑁 , 𝑘 ∈ 0,1, … , 𝑁 − 1

• Let us denote

𝑊 = 𝑒−𝑖
2𝜋
𝑁

• Then 

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑊
𝑛𝑘 , 𝑘 ∈ 0,1, … , 𝑁 − 1

4



Matrix interpretation of DFT

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑊
𝑛𝑘 , 𝑘 ∈ 0,1, … , 𝑁 − 1

• can be rewritten in matrix form as

𝑋0
𝑋1
…

𝑋𝑁−1

=

𝑊0 𝑊0 𝑊0 … 𝑊0

𝑊0 𝑊1 𝑊2 … 𝑊𝑁−1

… … … … …

𝑊0 𝑊𝑛−1 𝑊2 𝑛−1 … 𝑊 𝑛−1 2

𝑥0
𝑥1
…

𝑥𝑁−1

𝑵 ×𝑵 matrix

Complex numbers 
which can be 
computed once 
and stored!

5



DFT evaluation – operation count

• Multiplication of a complex 𝑁 × 𝑁 matrix by a complex 
𝑁 −dimensional vector
• No attempts to save operations gives

• 𝑁2 complex multiplications (“x”s)
• 𝑁 𝑁 − 1 complex additions (“+”s)

• However, first row and first column are equal to, which
• Saves 2𝑁 − 1 “x”s, resulting in 𝑁 − 1 2 complex “x”s & 𝑁 𝑁 − 1 “+”s

• Complex “x”: 4 real “x”s and 2 real “+”s;

Complex “+”: 2 real “+”s

• Total: 4 𝑁 − 1 2 real “x” & 4 𝑁 − 0.5 𝑁 − 1 real “+”s;

6



DFT computational complexity

• Thus for the input sequence of length 𝑁, the number of arithmetic 
operations in direct computation of DFT is proportional to 𝑁2.

• For 𝑁 = 1000, about a million operations are needed!

• In 1960’s, such a number was considered prohibitive in most 
applications

• This led to the (re)discovery of FFT by Cooley and Tukey in 196; Gauss 
had already discovered the principle of FFT in 1806 (even before 
Fourier). Although the Cooley - Tukey algorithm was originally meant 
for military applications, their paper was nevertheless published in a 
public domain which went on to become one of the most important 
FFT algorithms for varied applications.

7



The Fast Fourier Transform (FFT)
• The FFT is a highly elegant and efficient algorithm which is still one of the most 

used algorithm in speech processing, communications, frequency estimation, etc. 
– one of the most highly developed area of digital signal processing

• There are many different types and variations of FFTs
• Cooley – Tukey FFT algorithm
• Prime Factor (Good Thomas) FFT algorithm
• Bruun’s FFT algorithm
• Bluestein’s FFT algorithm
• Goertzel FFT algorithm
• Etc…

• FFTs are smarter computational schemes for computing the DFT; they are not 
new transforms !

• Here we consider Cooley-Tukey’s most basic radix-2 algorithm which requires 𝑁
to be a power of 2, and restrict ourselves to the case of one-dimensional FFTs; the 
transition to multi-dimensional FFTs is fairly straightforward and will be vey 
briefly discussed towards the end of the presentation

8



FFT Derivation 1
• Lets take the basic DFT equation: 

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑊
𝑛𝑘 , 𝑘 ∈ 0,1, … , 𝑁 − 1

And split into two parts: one for even 𝑛 and one for odd 𝑛

𝑋𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋 2𝑛 𝑘

𝑁 + ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋 2𝑛+1 𝑘

𝑁

= ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2 + 𝑒−𝑖

2𝜋𝑘
𝑁 ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2 = 𝐴𝑘 +𝑊𝑘𝐵𝑘

Where

𝐴𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

𝐵𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

Wk = 𝑒−𝑖
2𝜋
𝑁 9



FFT Derivation 2

𝐴𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

𝐵𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

• Note that 𝐴𝑘 and 𝐵𝑘 are themselves DFTs each of length 𝑁/2
• 𝐴𝑘 is the DFT of a sequence 𝑥2𝑛 = 𝑥0, 𝑥2, 𝑥4, … , 𝑥𝑁−4, 𝑥𝑁−2
• 𝐵𝑘 is the DFT of a sequence 𝑥2𝑛+1 = 𝑥1, 𝑥3, 𝑥5, … , 𝑥𝑁−3, 𝑥𝑁−1

• We know, however that the DFT is periodic in the frequency domain 
(in this case with a period 𝑁/2). This leads to further simplifications, 
as follows:

10



FFT Derivation 3
• We take the following equation again

𝑋𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋 2𝑛 𝑘

𝑁 + ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋 2𝑛+1 𝑘

𝑁

And evaluate at frequencies 𝑘 + 𝑁/2

𝑋𝑘+𝑁/2 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛 𝑘+𝑁/2

𝑁/2 + 𝑒−𝑖
2𝜋 𝑘+𝑁/2

𝑁 ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛 𝑘+𝑁/2

𝑁/2

Now simplify the terms as follows

𝑒
−𝑖

2𝜋𝑛 𝑘+𝑁/2

𝑁/2 = 𝑒
−𝑖

2𝜋𝑛𝑘

𝑁/2 and 𝑒−𝑖
2𝜋 𝑘+𝑁/2

𝑁 = −𝑒−𝑖
2𝜋𝑘

𝑁

11



FFT Derivation 4
• Therefore,

𝑋𝑘+𝑁/2 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2 − 𝑒−𝑖

2𝜋𝑘
𝑁 ෍

𝑛=0

𝑁
2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁
2

= 𝐴𝑘 +𝑊𝑘𝐵𝑘

With 𝐴𝑘, 𝑊𝑘 and 𝐵𝑘 defined as before

𝐴𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

𝐵𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

Wk = 𝑒−𝑖
2𝜋
𝑁

12



FFT Derivation 5
• Now compare the two equations

𝑋𝑘 = 𝐴𝑘 +𝑊𝑘𝐵𝑘 , 𝑋𝑘+𝑁/2 = 𝐴𝑘 −𝑊𝑘𝐵𝑘

This defines the FFT butterfly structure

𝑘

𝑘 𝑘
𝑘

𝑘 𝑘

𝑘

𝑘
𝑘

𝑘 𝑘

13



FFT Derivation 6
• More compactly

𝑋𝑘 = 𝐴𝑘 +𝑊𝑘𝐵𝑘 , 𝑋𝑘+𝑁/2 = 𝐴𝑘 −𝑊𝑘𝐵𝑘

This defines the FFT butterfly structure

𝑘𝑘

𝑘 𝑘
𝑘

𝑘

𝑘
𝑘

𝑘

14



FFT Derivation redundancy
• Now, 𝑊𝑘 can be assumed precomputed and stored, and we worry 

only about the following two terms

𝐴𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2 , 𝐵𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

• The above terms need only be computed for 𝑝 = 0,2, … ,
𝑁

2
− 1, since 

𝑋𝑘+𝑁/2 has been expressed in terms of these terms, hence we have 
uncovered a redundancy in the DFT computation.

• We can calculate 𝐴𝑘 and 𝐵𝑘 for 𝑝 = 0,1,… ,
𝑁

2
− 1 and use them for 

the calculation of both 𝑋𝑘 and 𝑋𝑘+𝑁/2

15



FFT Derivation – Computational load
• The number of complex multiplications and additions are:

• 𝐴𝑘 and 𝐵𝑘 each require 𝑁/2 complex multiplications and additions. The total for all 
𝑝 = 0,1,… , 𝑁/2 − 1 is then 2 𝑁/2 2 multiplications and additions for the 
calculation of all 𝐴𝑘 and 𝐵𝑘

• Then, there are 𝑁/2 multiplications for the computation of 𝑊𝑘𝐵𝑘 for all 𝑘 =
0,1,2,… , 𝑁/2 − 1

• Finally, 𝑁/2 + 𝑁/2 = 𝑁 additions for calculations of 𝐴𝑘 +𝑊𝑘𝐵𝑘 and 𝐴𝑘 −𝑊𝑘𝐵𝑘

• Thus the total number of complex additions and multiplications is 
approximately 𝑁2/2 for a large 𝑁

• The computation is approximately halved in comparison to direct DFT 
evaluation

16



Flow chart for an 𝑁 = 8 DFT

𝑋𝑘 = 𝐴𝑘 +𝑊𝑘𝐵𝑘

𝑋
𝑘+

𝑁
2
= 𝐴𝑘 −𝑊𝑘𝐵𝑘

𝐴𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

𝐵𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥2𝑛+1𝑒
−𝑖
2𝜋𝑛𝑘
𝑁/2

17



Further decomposition

• We have 𝑋𝑘 = 𝐴𝑘 +𝑊𝑘𝐵𝑘 and 𝑋𝑘+𝑁/2 = 𝐴𝑘 −𝑊𝑘𝐵𝑘; where 𝑊𝑘 =

𝑒−𝑖
2𝜋

𝑁

• Now, 
𝐴0, 𝐴1, 𝐴2, 𝐴3 are N/2 point DFTs

Using the redundancy just discovered 𝐴𝑘 = 𝛼𝑘 +𝑊𝑁/2
𝑘 𝛽𝑘 and 𝐴𝑘+𝑁/2 = 𝛼𝑘 −𝑊𝑁/2

𝑘 𝛽𝑘

𝐵0, 𝐵1, 𝐵2, 𝐵3 are N/2 point DFTs

Using the redundancy just discovered 𝐵𝑘 = 𝛼𝑘
′ +𝑊𝑁/2

𝑘 𝛽𝑘
′ and 𝐵𝑘+𝑁/2 = 𝛼𝑘

′ −𝑊𝑁/2
𝑘 𝛽𝑘

′

Finally,

𝑊𝑁/2
𝑘 = 𝑒

−𝑖
2𝜋𝑘
𝑁/2 = 𝑒−𝑖

2𝜋2𝑘
𝑁 = 𝑊𝑁

2𝑘

18



Flow chart for an 𝑁 = 8 DFT - Decomposition
• Assuming that 𝑁/2 is even, the same process can be carried on each 

of the 𝑁/2 point DFTs to further reduce the computation. The 
diagram for incorporating this extra stage of decomposition into the 
computation of 𝑁 = 8 point DFT is shown below

19



Flow chart for an 𝑁 = 8 DFT – Decomposition 2
• If 𝑁 = 2𝑀 then a further decomposition is possible by repeating the 

process 𝑀 times to reduce the computation to that of evaluating 𝑁
single point DFTs.

20



Bit reversal
• Examination of the previous chart shows that it is necessary to shuffle 

the order of the input data. This data shuffle is usually termed bit-
reversal for reasons that are clear if the indices of the shuffled data 
are written in binary

21



FFT derivation summary

• The FFT exploits the redundancies in the calculation of the basic DFT

• A recursive algorithm is derived that repeatedly rearranges the 
problem into two simpler problems of half the size

• Hence the basic algorithm operates on signals of length that is a 
power of 2, i.e.

𝑁 = 2𝑀 (for some integer 𝑀)

At the bottom of the tree we have the classic FFT butterfly structure

22



Computational load of the full FFT algorithm

• The type of FFT we have considered, where 𝑁 = 2𝑀, is called a radix-2
FFT.

• It has M = log2𝑁 stages, each using 𝑁/2 butterflies

• Complex multiplication requires 4 real multiplications and 2 real additions

• Complex addition/subtraction requires 2 real additions

• Thus, butterfly requires 10 real operations.

• Hence the radix-2 N-point FFT requires 10(𝑁/2)log2𝑁
real operations compared to about 8𝑁2 real operations
for the DFT

• This is a huge speed-up in typical applications, where N ranges from 
26– 220 (see comparison with direct DFT in next page) 

23



Computational load of the full FFT algorithm

24



Further advantage
• The FFT algorithm has a further significant advantage over direct evaluation of 

the DFT expression in that the computation can be performed in-place. This is 
best illustrated in the final flow chart where it can be seen that after two data 
values have been processed by the butterfly structure, those data are not 
required again the computation and the memory (in the RAM or cache) 
associated with them can either be freed or replaced with the values at the 
output of the butterfly structure.

25



Inverse FFT

• The IDFT is different from the DFT:
• it uses positive power of instead of negative ones

• There is an additional division of each output value by N

• Any FFT algorithm can be modified to perform the IDFT by
• using positive powers instead of negatives

• Multiplying each component of the output by 1 / N
Hence the algorithm is the same but computational load
increases due to N extra multiplications 

26



Multi-dimensional FFT – origin from DFT

• A multi-dimensional DFT is defined as

𝑋𝒌 = ෍

𝒏=0

𝑵−1

𝑥𝒏𝑒
−𝑖
2𝜋𝒌⋅𝒏
𝑵

• It transforms an array 𝑥𝒏 with a 𝑑 −dimensional vector on indices 𝒏 =
𝑛1, 𝑛2, … , 𝑛𝑑 by a set of 𝑑 nested summations (over 𝑛𝑗 = 0…𝑁𝑗 − 1 for 

each 𝑗) where the division 𝒏/𝑵, defined as 𝒏/𝑵 = 𝑛1/𝑁1, … , 𝑛𝑑/𝑁𝑑 is 
performed element-wise.

• Or Equivalently, it is the composition of a sequence of 𝑑 sets of one-
dimensional DFTs, performed along one dimension at a time (in any order)
• This provides one of simplest and most common DFT algorithm known as the row-

column algorithm

27



Multi-dimensional FFT – row/column 
algorithm

• One simply perform a sequence of 𝑑 one-dimensional FFTs using any of the FFT algorithms
• First transform along the 𝑛1 dimension
• Then along the 𝑛2 dimension, and so on…

• This method also has the usual O 𝑁log𝑁 computational time where 𝑁 = 𝑁1 ⋅ 𝑁2 ⋅ … ⋅ 𝑁𝑑 is the 
total number of data point transformed.
• Specifically, there are 𝑁/𝑁1 transform of size 𝑁1, and so on, so the complexity of the sequence of FFTs is:

𝑁

𝑁1
O 𝑁1log𝑁1 +⋯+

𝑁

𝑁𝑑
O 𝑁𝑑log𝑁𝑑 = O 𝑁 log𝑁1 +⋯+ log𝑁𝑑 = O 𝑁log𝑁

• In 2-dimensions, 𝑥𝒏 can be viewed as an 𝑛1 × 𝑛2 matrix, and this algorithm corresponds to first 
performing the FFT of all the rows (resp. columns), grouping the resulting transform rows (resp. 
columns) together as another 𝑛1 × 𝑛2 matrix, and then performing the FFT on each of the 
columns (resp. rows) of this second matrix, and similarly grouping the results into the final result 
matrix. Hence, the name row/column

• In higher dimensions, it can be advantageous for the cache (as in cache memory in computers) 
locality to group the dimensions recursively. For example, a three-dimensional FFT might first 
perform two-dimensional FFTs of each planar “slice” for each fixed 𝑛1,and then perform the one-
dimensional FFTs along the 𝑛1 direction.

28



Where to find FFT codes?

• Unless you are ready to spend a whole lot of time coding, its better to 
download a pre-programmed FFT code that is benchmarked, freely 
available, well documented, upgrades available, and user support too.

• Luckily, there is one such code that is widely available, well 
documented and quite easy to implement. This is the FFTW package 
found at (www.fftw.org). It was designed by Matteo Frigo and Steven 
G. Johnson at MIT and they made it available open source.
• FFTW = Fast Fourier Transform in the West

29

http://www.fftw.org/


References

• Many of the slides on FFT slides are adapted from the presentation of 
Dr. Elena Punskaya from Cambridge university, UK which can be found 
on https://www.slideshare.net/op205/fast-fourier-transform-
presentation

• Another major source has been Wikipedia articles.

• The FFTW website www.fftw.org contains documentation that 
provides a lot more details on the numerical implementations of the 
algorithm, as well as, how to use it.

30

https://www.slideshare.net/op205/fast-fourier-transform-presentation
http://www.fftw.org/

