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Representing dislocations in a continuum

A line (singular) defect

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Discrete representation

Michell 1899, Timpe 1905, 
Weingarten 1901, Volterra 1907, 
Love 1944, Nabarro 1967,  Hirth & 
Lothe 1982
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Representing dislocations in a continuum

A line (singular) defect

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Discrete representation

Continuous representation

Smearing out the line over a finite volume 𝑉

Represent via a finite non-zero polar density "𝜶

"𝜶 $𝒙 =
1

𝑉!"#$%$
𝑓(𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟)

𝒙

Michell 1899, Timpe 1905, 
Weingarten 1901, Volterra 1907, 
Love 1944, Nabarro 1967,  Hirth & 
Lothe 1982

Nye  1953, Kroener 1958,  Mura 1963, 
Willis 1967, Kosevich 1979, Kröner 1981, 
Acharya group 2001 - 2020
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Representing dislocations in a continuum

A line (singular) defect

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Discrete representation

Continuous representation

Smearing out the line over a finite volume 𝑉

Represent via a finite non-zero polar density "𝜶
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Theory of continuously represented dislocations: 
characterization

Characterized via Burgers vector 𝒃
&

and 
local unit tangent to dislocation line 8𝒕& 𝒙

Adapted from Arsenlis, Parks, Acta Mat. (1999)

A single dislocation on a slip system 𝜷

"𝜶& 𝒙 =
1

𝑉!"#$%$
;
'
𝒃
&
⊗ 8𝒕& 𝒙 𝑑𝐿𝒃

!

𝒕
!
𝒙"

𝒃
!

𝒕
!
𝒙𝟑

𝒃
!

𝒕
!
𝒙$

𝒃
!

𝒕
!
𝒙%
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Theory of continuously represented dislocations: 
characterization

Characterized via Burgers vector 𝒃
&

and 
local unit tangent to dislocation line 8𝒕& 𝒙

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Nye’s polar dislocation density tensor (Nye 1953)

A single dislocation on a slip system 𝜷

"𝜶& 𝒙 =
1

𝑉!"#$%$
;
'
𝒃
&
⊗ 8𝒕& 𝒙 𝑑𝐿

Multiple dislocations on different slip systems

"𝜶 𝒙 =>
&

"𝜶& 𝒙 =
1

𝑉!"#$%$
;
'
>
&

𝒃
&
𝒙 ⊗ 8𝒕& 𝒙 𝑑𝐿

𝒃
!

𝒕
!
𝒙"

𝒃
!

𝒕
!
𝒙𝟑

𝒃
!

𝒕
!
𝒙$

𝒃
!

𝒕
!
𝒙%

Continuity condition: 𝐝𝐢𝐯 "𝜶 = 𝟎
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Assume simply connected domain
Total displacement 𝒖 continuous everywhere => $𝒖 = 𝟎
Total distortion: "𝑼∥ = 𝐠𝐫𝐚𝐝 𝒖 = ∇𝒖 (“∥” => compatible)

𝐜𝐮𝐫𝐥 "𝑼∥ = 𝟎
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶)

Locations without dislocations (Circuit 𝐶))

Assume simply connected domain
Total displacement 𝒖 continuous everywhere => $𝒖 = 𝟎
Total distortion: "𝑼∥ = 𝐠𝐫𝐚𝐝 𝒖 = ∇𝒖 (“∥” => compatible)

𝒖$ = 𝟎 ⇒ "𝑼$∥ = 𝐠𝐫𝐚𝐝 𝒖$ ⇒ 𝐜𝐮𝐫𝐥 "𝑼$∥ = 𝟎

𝐜𝐮𝐫𝐥 "𝑼∥ = 𝟎
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶)

𝐶*
Locations without dislocations (Circuit 𝐶))

Assume simply connected domain
Total displacement 𝒖 continuous everywhere => $𝒖 = 𝟎
Total distortion: "𝑼∥ = 𝐠𝐫𝐚𝐝 𝒖 = ∇𝒖 (“∥” => compatible)

𝒖$ = 𝟎 ⇒ "𝑼$∥ = 𝐠𝐫𝐚𝐝 𝒖$ ⇒ 𝐜𝐮𝐫𝐥 "𝑼$∥ = 𝟎

Locations with dislocations (Circuit 𝐶*)

𝐜𝐮𝐫𝐥 "𝑼∥ = 𝟎

𝒃
&
= 𝒖$,& = ;

,!

"𝑼$,& ⋅ 𝒅𝑳 = ;
-!
𝐜𝐮𝐫𝐥 "𝑼$,& ⋅ $𝒏* 𝑑𝑆 ≠ 𝟎
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶)

𝐶*
Locations without dislocations (Circuit 𝐶))

Assume simply connected domain
Total displacement 𝒖 continuous everywhere => $𝒖 = 𝟎
Total distortion: "𝑼∥ = 𝐠𝐫𝐚𝐝 𝒖 = ∇𝒖 (“∥” => compatible)

𝒖$ = 𝟎 ⇒ "𝑼$∥ = 𝐠𝐫𝐚𝐝 𝒖$ ⇒ 𝐜𝐮𝐫𝐥 "𝑼$∥ = 𝟎

Locations with dislocations (Circuit 𝐶*)

𝒃
&
= 𝒖$,& = ;

,!

"𝑼$,& ⋅ 𝒅𝑳 = ;
-!
𝐜𝐮𝐫𝐥 "𝑼$,& ⋅ $𝒏* 𝑑𝑆 ≠ 𝟎

𝐜𝐮𝐫𝐥 "𝑼∥ = 𝟎

𝐜𝐮𝐫𝐥 "𝑼$,& ≠ 𝟎 ⇒ "𝑼$,& ≠ "𝑼$,&∥

"𝜶&
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶)

𝐶.

Locations with multiple dislocations (Circuit 𝐶.)

𝒃 = 𝒖$
&! + 𝒖$

&" = ∫,#
"𝑼$ ⋅ 𝒅𝑳 = ∫-# 𝐜𝐮𝐫𝐥

"𝑼$ ⋅ $𝒏/ 𝑑𝑆 ≠ 0

"𝜶

𝐶*
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Theory of continuously represented dislocations: 
deformation fields

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶)

𝐶.

Locations with multiple dislocations (Circuit 𝐶.)

𝒃 = 𝒖$
&! + 𝒖$

&" = ∫,#
"𝑼$ ⋅ 𝒅𝑳 = ∫-# 𝐜𝐮𝐫𝐥

"𝑼$ ⋅ $𝒏/ 𝑑𝑆 ≠ 0

"𝜶

𝐶*

Now, 

"𝜶 =>
&

"𝜶& ⇒ 𝐜𝐮𝐫𝐥 "𝑼$ =>
&

𝐜𝐮𝐫𝐥 "𝑼$,𝜷

But

"𝑼$ ≠>
&

"𝑼$
&

Also

"𝑼$ ≠ "𝑼$∥
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Stokes-Helmholtz type decomposition of !𝑼!

!𝑼X = !𝑼X∥ + !𝑼XY in Ω

Additive decomposition of !𝑼X into compatible !𝑼X∥ and incompatible !𝑼XY

Acharya and Roy JMPS 54 (2006) 1687 – 1710
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Stokes-Helmholtz type decomposition of !𝑼!

Unique additive decomposition of !𝑼X into compatible !𝑼X∥ and incompatible !𝑼XY

𝐝𝐢𝐯 !𝑼XY = 𝟎 in Ω
!𝑼XY ⋅ +𝒏 = 𝟎 on 𝜕Ω

Acharya and Roy JMPS 54 (2006) 1687 – 1710

!𝑼X = !𝑼X∥ + !𝑼XY in Ω
𝐠𝐫𝐚𝐝 %𝒘, since 𝐜𝐮𝐫𝐥 *𝑼!∥ = 𝟎
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Stokes-Helmholtz type decomposition of !𝑼!

Unique additive decomposition of !𝑼X into compatible !𝑼X∥ and incompatible !𝑼XY

𝐝𝐢𝐯 !𝑼XY = 𝟎 in Ω
!𝑼XY ⋅ +𝒏 = 𝟎 on 𝜕Ω

Acharya and Roy JMPS 54 (2006) 1687 – 1710

!𝑼X = !𝑼X∥ + !𝑼XY in Ω
𝐠𝐫𝐚𝐝 %𝒘, since 𝐜𝐮𝐫𝐥 *𝑼!∥ = 𝟎

⇒ !𝜶 = 𝐜𝐮𝐫𝐥 !𝑼X = 𝐜𝐮𝐫𝐥 !𝑼XY ≠ 𝟎
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Elasto-static theory of dislocation fields

Question: Given !𝜶Z (typically from experiments), how to obtain !𝑼X = !𝑼X∥ + !𝑼XY?
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Elasto-static theory of dislocation fields

Question: Given !𝜶Z (typically from experiments), how to obtain !𝑼X = !𝑼X∥ + !𝑼XY?

Answer: 

1) For !𝑼XY: approach similar to the Helmholtz identity (𝐜𝐮𝐫𝐥 𝐜𝐮𝐫𝐥 !𝝌 = 𝐠𝐫𝐚𝐝 𝐝𝐢𝐯 !𝝌 − Δ!𝝌)
!𝜶 = 𝐜𝐮𝐫𝐥 !𝑼XY and 𝐝𝐢𝐯 !𝑼XY = 𝟎 gives Δ!𝑼XY = −𝐜𝐮𝐫𝐥 !𝜶 (Acharya Roy JMPS 2006)
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Elasto-static theory of dislocation fields

Answer: 

1) For !𝑼XY: approach similar to the Helmholtz identity (𝐜𝐮𝐫𝐥 𝐜𝐮𝐫𝐥 !𝝌 = 𝐠𝐫𝐚𝐝 𝐝𝐢𝐯 !𝝌 − Δ!𝝌)
!𝜶 = 𝐜𝐮𝐫𝐥 !𝑼XY and 𝐝𝐢𝐯 !𝑼XY = 𝟎 gives Δ!𝑼XY = −𝐜𝐮𝐫𝐥 !𝜶 (Acharya Roy JMPS 2006)

2) For !𝑼X∥: mechanical equilibrium and elastic law

Mechanical (static) equilibrium: 𝐝𝐢𝐯 *𝝈 = 𝟎
Elastic constitutive law: *𝝈 = 11𝒄: 1𝜺𝒆= 11𝒄: *𝑼𝒆

𝜎$%,% = 0
𝑐$%'(𝑈'(,%

!∥ + 𝑓$ = 0 with 𝑓$ = 𝑐$%'(𝑈'(,%!)

Solution using the Green’s function approach!

𝑐$%'(𝑤',(% + 𝑓$ = 0

Question: Given !𝜶Z (typically from experiments), how to obtain !𝑼X = !𝑼X∥ + !𝑼XY?

with 𝑤',( = 𝑈'(
!∥
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Plastic distortion field

22

"𝑼∥ = "𝑼$ + "𝑼" = "𝑼$∥ + "𝑼$1 + "𝑼"∥ + "𝑼"1

⇒ "𝑼"1 = −"𝑼$1

𝐜𝐮𝐫𝐥 "𝑼$1 = "𝜶 = −𝐜𝐮𝐫𝐥 "𝑼"1

𝐝𝐢𝐯 "𝑼$1 = 𝟎 = 𝐝𝐢𝐯 "𝑼"1

"𝑼$1 ⋅ 𝒏 = 𝟎 = "𝑼"1 ⋅ 𝒏 On 𝑆2345

In 𝑉

Given "𝜶, "𝑼"1 obtained using same procedure as "𝑼$1

Presence of a dislocation => "𝑼" ≠ 𝟎

Stationary case (no knowledge of history of dislocation motion)
=> Assume "𝑼"∥ = 𝟎Adapted from Arsenlis, Parks, Acta Mat. (1999)
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Kinematics – transport of a single dislocation

23

Conservation of Burgers vector gives

$̇𝒃& =
d
d𝑡
;
-
"𝜶& ⋅ $𝒏 𝑑𝑆 = ;

-
𝐜𝐮𝐫𝐥 𝒇̂& ⋅ $𝒏 𝑑𝑆 + ;

-
𝒔̂& ⋅ $𝒏𝑑𝑆

We can prove that 𝒇̂& = −"𝜶&×$𝑽&

Local form: "̇𝜶& = −𝐜𝐮𝐫𝐥 "𝜶&×$𝑽& + 𝒔̂&

Adapted from Arsenlis, Parks, Acta Mat. (1999)

– (Acharya 2001)

Dislocation velocity

Question: How to obtain $𝑽&? 

SourceFlux

https://www.manas-upadhyay.com 
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Dislocation velocity – 2nd law of thermodynamics

24

Power dissipated (Acharya 2003)

𝐷 = ∫6 "𝝈: "̇𝑼
" 𝑑𝑉 = ∫6∑& 𝑭

&
⋅ 𝑽

&
𝑑𝑉 ≥ 0

Adapted from Arsenlis, Parks, Acta Mat. (1999)

With 𝑭
&
= "𝝈 ⋅ $𝒃&×𝒍̅& (Peach-Koehler force)

Answer: In theory, all 𝑽
&

that satisfy 

∫6∑& 𝑭
&
⋅ 𝑽

&
𝑑𝑉 ≥ 0 are admissible. 

Simplest expression: 𝑽
&
= *

7$
𝑭
&

with 𝐵& > 0

Question: How to obtain $𝑽&? 

https://www.manas-upadhyay.com 
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Isothermal and adiabatic Elasto-plastic dynamic 
theory of dislocation fields (Acharya 2003)

𝐜𝐮𝐫𝐥 "𝑼$1 = "𝜶 = −𝐜𝐮𝐫𝐥 "𝑼"1

𝐝𝐢𝐯 "𝑼$1 = 𝟎 = 𝐝𝐢𝐯 "𝑼"1
"𝑼$1 ⋅ 𝒏 = 𝟎 = "𝑼"1 ⋅ 𝒏 On 𝑆2345

In 𝑉

𝐝𝐢𝐯 "𝝈 = 𝝆𝒖̈

"𝝈 = ""𝑪: "𝑼∥ − "𝑼"∥ − "𝑼"1

– Incompatible elastic distortion

– dynamic equilibrium and elastic constitutive law

𝒖 = 𝒖4 On 𝑆23454

𝒕 = "𝝈 ⋅ 𝒏 On 𝑆23458 – Dirichlet and Neumann boundary conditions

"̇𝜶& = −𝐜𝐮𝐫𝐥 "𝜶&×$𝑽& + 𝒔̂& – Dislocation transport

and plastic distortion

𝑽
&
= *

7$
𝑭
&
= *

7$
"𝝈 ⋅ $𝒃&×𝒍̅& – Dislocation velocity
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The Thermal Field Dislocation Mechanics (T-FDM) 
model

Upadhyay, M. V., On the thermo-mechanical theory of field dislocations in transient heterogeneous 
temperature fields, Journal of the Mechanics and Physics of Solids, 105 (2020) 104150

• Development
• The isothermal and adiabatic FDM model
• Heat conduction
• The new T-FDM model

• Model assumptions and impact on AM modelling
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Theory of heat conduction

27

Boundary 
conditions

𝜃 = 𝜃9 On 𝑆2345:

𝑞# = 𝒒 ⋅ 𝒏 On 𝑆2345
;

Temperature

Heat flux𝑞!

𝜃"
https://www.manas-upadhyay.com 
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Theory of heat conduction

28

1st law: 𝜌𝑐<𝜃̇ = −div $𝒒 + 𝜌𝑟

Boundary 
conditions

𝜃 = 𝜃9 On 𝑆2345:

𝑞# = 𝒒 ⋅ 𝒏 On 𝑆2345
;

Temperature

Heat flux

Heat lossInternal energy 
change

𝑞!

𝜃"
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Theory of heat conduction

29

1st law: 𝜌𝑐<𝜃̇ = −div $𝒒 + 𝜌𝑟

Boundary 
conditions

𝜃 = 𝜃9 On 𝑆2345:

𝑞# = 𝒒 ⋅ 𝒏 On 𝑆2345
;

2nd law: 𝐷 = −∫6 $𝒒 ⋅ 𝛁𝜃 𝑑𝑉 ≥ 0

Temperature

Heat flux

Heat lossInternal energy 
change

𝑞!

𝜃"
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Theory of heat conduction

30

1st law: 𝜌𝑐<𝜃̇ = −div $𝒒 + 𝜌𝑟

Boundary 
conditions

𝜃 = 𝜃9 On 𝑆2345:

𝑞# = 𝒒 ⋅ 𝒏 On 𝑆2345
;

2nd law: 𝐷 = −∫6 $𝒒 ⋅ 𝛁𝜃 𝑑𝑉 ≥ 0

In theory, all $𝒒 that satisfy −∫6 $𝒒 ⋅ 𝛁𝜃 𝑑𝑉 ≥ 0 are admissible. 

Simplest expression: $𝒒 = −"𝑲 ⋅ 𝛁𝜃 with "𝑲 positive definite

Fourier law of heat conduction

Temperature

Heat flux

Heat lossInternal energy 
change

𝑞!

𝜃"
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The Thermal Field Dislocation Mechanics (T-FDM) 
model

Upadhyay, M. V., On the thermo-mechanical theory of field dislocations in transient heterogeneous 
temperature fields, Journal of the Mechanics and Physics of Solids, 105 (2020) 104150

• Development
• The isothermal and adiabatic FDM model
• Heat conduction
• The new T-FDM model

• Model assumptions and impact on AM modelling
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Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Deformation fields

32

"𝑼∥ = "𝑼$ + "𝑼" + 𝜺̂: = "𝑼$∥ + "𝑼$1 + "𝑼"∥ + "𝑼"1+? ? ?

Presence of a heterogeneous temperature field

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝑞!

𝜃"
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Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Deformation fields

33

"𝑼∥ = "𝑼$ + "𝑼" + 𝜺̂: = "𝑼$∥ + "𝑼$1 + "𝑼"∥ + "𝑼"1+? ? ?

Presence of a heterogeneous temperature field

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Stokes-Helmholtz decomposition of 𝜺̂:

𝜺̂: = "𝑼:∥ + "𝑼:1

"𝑼:∥, "𝑼:1 can be asymmetric

They must satisfy "𝑼:∥ + "𝑼:1 = "𝑼:∥ + "𝑼:1
=

𝑞!

𝜃"
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Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Deformation fields

34

"𝑼∥ = "𝑼$ + "𝑼" + 𝜺̂: = "𝑼$∥ + "𝑼$1 + "𝑼"∥ + "𝑼"1+? ? ?

Presence of a heterogeneous temperature field

Adapted from Arsenlis, Parks, Acta Mat. (1999)

Stokes-Helmholtz decomposition of 𝜺̂:

𝑞!

𝜃"

"𝑼$1 = −"𝑼"1 − "𝑼:1

Incompatible plastic and thermal distortions 
contribute to incompatible elastic distortion

𝜺̂: = "𝑼:∥ + "𝑼:1

"𝑼:∥, "𝑼:1 can be asymmetric

They must satisfy "𝑼:∥ + "𝑼:1 = "𝑼:∥ + "𝑼:1
=
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Adapted from Arsenlis, Parks, Acta Mat. (1999)

For applications, use empirical formula

𝜺̂: = "𝜸 𝜃 − 𝜃)

So what is the point of 𝜺̂: = "𝑼:∥ + "𝑼:1?

- Volumetric condition: 𝐝𝐢𝐯 "𝑼:1 = 𝟎
- Boundary condition:  "𝑼:1 ⋅ $𝒏 = 𝟎

𝑞!

𝜃"

Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Deformation fields
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Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Defect character

36

$𝒃 = ;
-!
𝐜𝐮𝐫𝐥 "𝑼$1 ⋅ $𝒏 𝑑𝑆

= ∫-!−𝐜𝐮𝐫𝐥
"𝑼"1 ⋅ $𝒏 𝑑𝑆 + ∫-!−𝐜𝐮𝐫𝐥

"𝑼:1 ⋅ $𝒏 𝑑𝑆

Single dislocation – Burgers vector

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝑞!

𝜃"

𝐶*

"𝜶",& "𝜶:

"𝜶

"𝜶 = "𝜶",& + "𝜶:

Nye’s tensor Dislocation
density
tensor

Thermal 
quasi-dislocation

density tensor
(Kröner 1958)
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Theory of dislocation fields in a steady-state 
heterogeneous temperature field: Defect character

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝐶.

"𝜶 = >
&

"𝜶",& + "𝜶:

𝑞!

𝜃"

Nye’s tensor Polar 
dislocation

density

Thermal 
quasi-dislocation

density

Multiple dislocations
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Kinematics of dislocations in transient heterogeneous 
temperature fields

• Absence of dislocations => Temperature changes result in 
evolution of "𝜶 and "𝑼$1

• Presence of dislocations
• Temperature changes can be accommodated by dislocation 

density evolution without change to "𝜶 and "𝑼$1

=> dislocation structures could form during rapid cooling
without change to stress fields

Polar dislocation density:

"̇𝜶",& = 𝐜𝐮𝐫𝐥 "𝜶",&×𝑽
&
+ "𝑺",&

Thermal quasi-dislocations:
"̇𝜶: = 𝛁× ̇̂𝜺: ≈ −"𝜸 ⋅ ̇𝛁𝜃 ⋅ "$𝐗

Nye’s tensor:

"̇𝜶 = 𝐜𝐮𝐫𝐥 "̇𝑼$1 =>
&

𝐜𝐮𝐫𝐥 "𝜶",&×𝑽
&
+ "𝑺",& + "̇𝜶:

3rd order Levi-Civita 
permutation tensor

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝑞!

𝜃"
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Thermo-mechanical aspects of dislocation fields in 
transient temperature changes: Temperature evolution

Adapted from Arsenlis, Parks, Acta Mat. (1999)

𝑞!

𝜃"

First law:

𝜌𝑢̇ = −$𝛁 ⋅ $𝒒 + "𝝈: ̇̂𝜺 + 𝜌𝑟

Second law (Clausius Duhem inequality): 

−𝜌 𝜓̇ + 𝑠𝜃̇ + "𝝈: ̇̂𝜺 −
1
𝜃
$𝒒 ⋅ $𝛁𝜃 ≥ 0

Free energy density evolution:

𝜓̇ =
𝜕𝜓

𝜕 𝜺̂ − 𝜺̂" : ̇̂𝜺 − ̇̂𝜺" +
𝜕𝜓
𝜕𝜃 𝜃̇

Finally, 
𝜌𝑐>𝜃̇ = $𝛁 ⋅ "𝑲 ⋅ $𝛁𝜃 + "𝝈: ̇̂𝜺" − 𝜃"𝜸: ^̂𝒄: ̇̂𝜺 − ̇̂𝜺" + 𝜌𝑟

=> Dislocation motion will result in temperature changes

−"𝑲 ⋅ $𝛁𝜃
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Dynamics of dislocation fields in transient 
heterogeneous temperature fields

𝐜𝐮𝐫𝐥 "𝑼$1 = "𝜶 = −𝐜𝐮𝐫𝐥 "𝑼"1 − 𝐜𝐮𝐫𝐥 "𝑼:1

𝐝𝐢𝐯 "𝑼$1 = 𝐝𝐢𝐯 "𝑼"1 = 𝐝𝐢𝐯 "𝑼:1 = 𝟎
"𝑼$1 ⋅ 𝒏 = "𝑼"1 ⋅ 𝒏 = "𝑼:1 ⋅ 𝒏 = 𝟎 On 𝑆2345

In 𝑉

𝐝𝐢𝐯 "𝝈 = 𝝆𝒖̈
"𝝈 = ^̂𝒄: "𝑼 − "𝑼"∥ − "𝑼"1

– Incompatible elastic distortion

– dynamic equilibrium and elastic constitutive law

𝒖 = 𝒖4 On 𝑆23454

𝒕 = "𝝈 ⋅ 𝒏 On 𝑆23458
– Dirichlet and Neumann boundary conditions

"̇𝜶 =>
𝜷

−𝐜𝐮𝐫𝐥 "𝜶",&×$𝒗& + "𝑺",& + "̇𝜶: – Dislocation and thermal-quasi dislocation evolution

and plastic distortion

𝑽
&
= *

7$
𝑭
&
= *

7$
"𝝈 ⋅ $𝒃&×𝒍̅& – Dislocation velocity

𝜃 = �𝜃 On 𝑆2345:

𝑞 = 𝒒# ⋅ 𝒏 On 𝑆2345
;

𝜌𝑐>𝜃̇ = $𝛁 ⋅ "𝑲 ⋅ $𝛁𝜃 + "𝝈: ̇̂𝜺" − 𝜃"𝜸: ^̂𝒄: ̇̂𝜺 − ̇̂𝜺" + 𝜌𝑟
$𝒒 = −"𝑲 ⋅ $𝛁𝜃

– Internal energy balance

– Fourier law of heat conduction

− ^̂𝒄: "𝜸 𝜃 − 𝜃)

Upadhyay, JMPS 
105 (2020) 104150
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The Thermal Field Dislocation Mechanics (T-FDM) 
model

Upadhyay, M. V., On the thermo-mechanical theory of field dislocations in transient heterogeneous 
temperature fields, Journal of the Mechanics and Physics of Solids, 105 (2020) 104150

• Development
• The isothermal and adiabatic FDM model
• Heat conduction
• The new T-FDM model

• Model assumptions and impact on AM modelling

41https://www.manas-upadhyay.com 

https://www.manas-upadhyay.com/


Model assumptions and impact on AM modeling

42

• Local thermodynamic equilibrium

– Highest 𝜃̇ during SSTC ≈ 10? 𝐾/𝑠

– In 10@*.𝑠, Δ𝜃 = 10@?𝐾

– Atomic fluctuations corresponding to 
thermal equilibrium for Δ𝑡 > 10@*.𝑠

Þ Thermal equilibrium instantaneously achieved 
compared to changes in boundary condition

Model is suitable to simulate DD during AM
Δ𝜃 ≈ 70K1𝜇𝑚
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Model assumptions and impact on AM modeling

43

• Local thermodynamic equilibrium

– Highest 𝜃̇ during SSTC ≈ 10? 𝐾/𝑠

– In 10@*.𝑠, Δ𝜃 = 10@?𝐾

– Atomic fluctuations corresponding to 
thermal equilibrium for Δ𝑡 > 10@*.𝑠

Þ Thermal equilibrium instantaneously achieved 
compared to changes in boundary condition

Model is suitable to simulate DD during AM

• Need careful treatment during upscaling

– Too large 𝑉 or 𝐶 => non-local temperature effects

Δ𝜃 ≈ 70K1𝜇𝑚

𝐶
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Summary

• The thermo-mechanically rigorous T-FDM model captures
• Isothermal/adiabatic dislocation dynamics

+
• Dislocation generation/annihilation/motion/density evolution due to 

temperature evolution
+

• Temperature changes induced by moving dislocations

44

Upadhyay, M. V., On the thermo-mechanical theory of field dislocations in transient heterogeneous 
temperature fields, Journal of the Mechanics and Physics of Solids, 105 (2020) 104150.
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